
Contents
Chapter-1: Cloudera CDP Platform ... 1

Chapter-2: CDP Private Cloud ... 7

Chapter-3: CDP Private Cloud Data Services ... 8

Chapter-4: Cloudera Manager .. 11

Chapter-5: Apache Atlas ... 17

Chapter-6: Apache Ranger .. 18

Chapter-1: Cloudera CDP Platform

- About Cloudera: The Cloudera is a Data Company, and it helps people to turn data into clear

and actionable insights. You can also say, Cloudera is an Enterprise Data Cloud Company.

Cloudera (Leader among all), Hortonworks, MapR made the BigData market. Cloudera

adopted new technologies to keep itself afloat like public cloud, public cloud storage,

Kubernetes because they really make sense in current time, give benefits to customers. You

must focus on things that don’t change and since last 100’s of years it is a truth that

enterprises still want to turn data into insights. And that is what Cloudera do and will

continue to do so. It has been a bit harder for BigData company to convince what they do in

the BigData. Still Cloudera CDP is the only available platform to analyse petabytes of data. “If

I use CDP with Spark running on Kubernetes analyzing data residing in S3, where is Hadoop?”

As long as you use the CDP service, its Hadoop only, because all came from Hadoop only.

- Enterprise Data Cloud: In 2018, Cloudera and Hortonworks announced they would merge to

form a single company. This merger completed in January 2019. Its stated goal was to

produce the first enterprise data cloud, with a platform to support hybrid and multicloud

deployments, and contain 100% open-source components. Originally released as CDP Data

Center, CDP Private Cloud Base is the first release from the combined company. It integrates

the best of Cloudera and Hortonworks technologies into an on-premises offering.

- Cloudera Data Platform: CDP can be deployed in a public cloud, in an on-premises data

center, and as an on-premises private cloud. CDP is an enterprise data platform that is easy

to deploy, manage and use. By simplifying operations, CDP reduces the time to onboard new

use cases. CDP manages data in any environment, including multiple public clouds, private

cloud, and hybrid cloud. CDP is a new approach to enterprise data, running anywhere from

the Edge to AI. CDP delivers easy-to-use analytics that support the most complex,

demanding use cases: Complete: All functions needed to ingest, transform, query, optimize,

and make predictions from data are available, eliminating the need for point products

Integrated: Unified analytic functions work together eliminating data silos and copies of

data. Ensures all workloads on the platform share common security, governance, and

metadata. Users can efficiently find, curate, and share data, enabling self-service access to

trusted data and analytics. With CDP businesses manage and secure the end-to-end data

lifecycle - collecting, enriching, analyzing, experimenting and predicting with their data - to

drive actionable insights and data-driven decision making. The most valuable and

transformative business use cases require multi-stage analytic pipelines to process

enterprise data sets. CDP empowers businesses to unlock value from large-scale, complex,

distributed, and rapidly changing data and compete in the age of digital transformation. CDP

is just another “distro” (i.e. “unity distro”) of the two parent distros (CDH & HDP).

o Hybrid Cloud: CDP Delivers same data management and analytics capabilities

seamlessly across private and public clouds. CDP runs analytic workloads on multiple

Public Clouds, on-premises Private Clouds or a combination of each for Hybrid

Cloud, with a consistent user and IT admin experience. Single cloud providers can’t
match this flexibility, which is critical for data governance, performance and

geographic coverage.

- CDP Helpful in different scenarios:

o Business Use cases: Data Privacy regulations i.e., GDPR, Different types of analytics.

o Business Objectives: Speed of deployment, cost efficiency etc.

o Technical Considerations: Source and location of data, elasticity required etc.

- CDP SDX: CDP's SDX (Shared Data Experience) technologies ensures and enterprise data

cloud is secure by design:

o Consistency: Security and governance policies are set once and applied across all

data and workloads.

o Portability: Policies stay with the data even as it moves across all supported

infrastructures.

o SDX ensures consistent data security, governance, and control across the data

lifecycle and across all environments while mitigating risks and costs.

o SDX provides data access policies and state information and state information

(metadata, data lineage, metrics, audit trails and more) as an always-on layer in CDP

to meet the needs for ever increasing regulatory compliance, reduce business and

security risks in handling sensitive data as well as provide safe and agile self-service

access to data and analytics.

o With SDX, enterprises set data access controls and policies once and they will be

automatically and seamlessly enforced across data and analytics in hybrid as well as

multi-cloud deployments, even as data and workloads move between them.

o SDX makes it trivial to setup up fully-secured data-lakes with ABAC (Attribute based

access control, this really a good thing to understand if you don’t know) and fine-

grained policies across data stored in object stores and on-prem HDFS, along-with

lineage & provenance for governance and encryption (storage, and on the wire).

o A shared data experience (SDX) set of pipelines also makes it possible to apply the

same security and governance model to any instance of CDE (Cloudera Data

Engineering)

o

- CDP as SaaS: Cloudera Data Platform is also available as SaaS on AWS, Azure and Google

Cloud. Software as a service is a delivery model for software applications whereby the

vendor hosts and operates the application over the Internet. Customers pay for using the

software without owning the underlying infrastructure. With SaaS Contracts, customers will

pay for usage through their AWS bill.

- CDP for Edge to AI:

o The integration of streaming, analytics, and machine learning (the data lifecycle) is

now recognized as a prerequisite for nearly every data-driven business use case.

o By enabling companies to get control of data, across all environments, companies

are able to master the data lifecycle to get insights that improve productivity and

continue their transformation to being data-driven organizations.

- Hadoop Philosophy: Analysing data based on the followings

o Disaggregate the software stack i.e. storage, compute, security and governance.

o Build for extremely large-scale using distributed system and commodity

infrastructure.

o Leverage open source for open standards and community scale.

o Contiguously evolve the ecosystem for innovation at every layer, independently.

- Hadoop on Premises: Architecture of Hadoop similar to below in a Data Center

o Co-located Compute and Storage: networking (at scale) was expensive and slow

relative to data volumes and caching (RAM & SSDs) being expensive (at scale).

o Large-scale, multi-tenant clusters as a shared resource with clusters exceeding 5,000

nodes at the high-end with strong focus on resource management across millions of

batch applications (YARN) and nascent attempts at providing multi-tenancy for data-

warehousing (Hive-LLAP/Impala), serving (HBase) etc.

o Software to be downloaded and used on shared clusters.

o In on-prem deployments, enterprises were able to use approaches like network

perimeter security and physical access control as the key pillars of security. In many

cases, customers found such simplistic security enforcement to be sufficient and

prioritized simplicity of deployment over more robust security mechanisms.

- Hadoop gen-1 Challenges: The big, unfortunate, side-effect of the above was the complexity

of upgrading the cluster:

o Large, shared clusters with shrink-wrapped software meant that the upgrade was a

big-bang i.e., every tenant had to upgrade at the same time and the exposure was

very broad.

o The organizational effort to coordinate the upgrade across hundreds of tenants and

thousands of applications was extremely high.

o The co-located architecture didn’t distinguish between upgrades of the storage layer

(risk) and the compute layer (coordination).

- Hadoop gen-1 in the Public Cloud: Amazon EMR, Microsoft HDInsight etc.

o Leveraged cloud object stores were decoupled from compute. The community-built

connectors to S3, WASB etc. using the Hadoop Compatible Filesystem (HCFS) APIs.

o Used VMs to spin up compute-only Hadoop clusters which were largely ephemeral;

however, the relatively high overhead of spinning up VMs themselves (nearly 10

mins) led to the need to keep clusters up-and-running — an expensive proposition.

o With the ephemerality of compute clusters, there wasn’t a good way to manage

long-lived metadata, security policies etc. which also led to expensive long-running

clusters.

- Hadoop Powered Data Cloud (gen-3): By the end of the first decade, Big Data solution

provider needed a fundamental rethink — not just for the public cloud, but also for on-

premises. It’s also helpful to cast an eye on the various technological forces driving Hadoop’s

evolution over the next decade:

o Cloud experiences fundamentally changed expectations for easy to use, self-service,

on-demand, elastic consumption of software and apps as services.

o Separation of compute and storage is now practical in both public and private

clouds, significantly increasing workload performance.

o Containers and Kubernetes are ubiquitous as a standard operating environment that

is more flexible and agile.

o The integration of streaming, analytics and machine learning — the data lifecycle —

is recognized as a prerequisite for nearly every data-driven business use case.

o Disaggregated storage, metadata/security/governance and compute layers. In

particular, the ever-widening use of RAM and SSDs for relatively cheap caching

means that we can provide interactive performance even when storage is

disaggregated i.e., take compute to storage.

o Software in a services form-factor.

o A new approach to multi-tenancy, driven by the emergence of containers, where

every tenant can be provisioned as an isolated private service (e.g. warehouse) and

leverage Kubernetes for software management.

o Extremely strong focus on security across on-premise and public cloud. No more

corporate firewalls for hybrid deployments.

o Increased awareness of data privacy and emergence of stringent regulations

(GDPR/EU, CCPA/California, PDPB/India) led to the requirement of richer

governance including lineage, provenance and more across data migration (cloud,

on-prem etc.) and the entire lifecycle of data including streaming, data engineering,

reporting, predicting and serving.

- Benefits of Hadoop Powered Data Cloud (gen-3):

o Ease of management due to de-coupling of storage/metadata and compute stacks.

Even in situations, such as on-premises, where it might make sense to co-locate data

and compute for efficiency purposes they are managed independently.

o Ease-of-use due to the strong focus on ‘it’s a service’ — which leads to persona-

focused UX for warehousing, machine learning, data engineering, streaming, and

data-flow.

o Faster provisioning with containers and Kubernetes dramatically speeding up

provisioning and simplifying management (i.e. eliminates management) of services

such as data warehouse, ML, streaming etc.

o Strong security and governance with SDX across the entire data & analytical life-

cycle enabling data-driven decision making.

- Hadoop Power across generations:

- Hadoop is dead: As per Arun C Murthy (If you are in BigData world, you may not need intro

of Arun), Hadoop is dead — done, and dusted. Hadoop as a philosophy to drive an ever-

evolving ecosystem of open-source technologies and open data standards that empower

people to turn data into insights is alive and enduring. As long as there is data, there will be

“Hadoop”.

- Cloudera Runtime: Cloudera Runtime is the core open-source software distribution within

the CDP and foundation of CDP. Cloudera Runtime includes approximately 50 open-source

projects that comprises the core distribution of data management tools with the CDP.

Cloudera Data Platform is an aggregate of Cloudera Runtime, Cloudera Manager and other

configuration. This is available as part of CDP Public Cloud and CDP Private Cloud Base.

- Cloudera Runtime Components: Cloudera Runtime comes with different versions like 7.0 or

7.1, it means which versions are supported underline. There are majorly three categories of

the components as below.

o Apache Components: These are the components which are available from Apache

Open source like Apache Arrow, Apache Atlas, Apache HBase, Apache Kafka etc.

There are appox. 25 Apache Components included in Cloudera Runtime.

o Other Components: This includes 10 different components like

 Cruise Control

 Data Analytics Studio

 GCS Connector

 HBase Indexer

 Hue

 Search

 Schema Registry

 Streams Messaging Manager

 Stream Replication Manager

o Connectors and Encryption Components: This includes 6 components as below.

 HBase Connectors

 Hive Meta Store

 Hive on Tez

 Hive Warehouse Connector

 Spark Atlas Connector

 Spark Schema Registry

- Cloudera Runtime in Public and Private Cloud: There are different versions of Cloudera

Runtime for Public Cloud (CR-7.2.8) and Private Cloud (7.1.6) as of now.

Chapter-2: CDP Private Cloud
- CDP Private Cloud: As name suggests this setup is deployed in private data centers or you

can see it’s an on-premises version of Cloudera Data Platform. This is a combination of CDP

Private Cloud Base and CDP Private Cloud Data Services. CDP Private Cloud Base Architecture

is shown in below image.

- CDP Private Cloud and Hybrid Services: CDP Private Cloud Base supports a hybrid solutions

where compute tasks are segregated from data storage and where data can be accessed

from remote clusters, and workloads are created using CDP Private Cloud Data Services.

- CDP Private Cloud Base: This was previously known as Cloudera Data Platform (CDP) Data

Center. And this is the on-premises version of Cloudera Data Platform. This provides

combined capability of Cloudera (CDH: Cloudera Distribution of Apache Hadoop) and

Hortonwork’s (HDP: Hortonwork’s Data Platform) technologies as well many additional

features. CDP Private Cloud Base forms a comprehensive data platform that encompasses

the entire data life cycle. CDP Private Cloud Base is a foundation for the CDP Private Cloud.

- CDP Private Cloud Base and Workloads: CDP Private Cloud Base is comprised of a variety of

components such as HDFS, Hive-3, HBase, Impala and many other components. We can

select any combination of these services to create clusters that address your business

requirements and workloads. Cloudera also provides various pre-configured packages of

services for common workloads.

- CDP Data Center: This is an old name of CDP Private Cloud Base. And same as on-premise

version of Cloudera Data Platform.

- CDP Private Cloud: (CDP Private Cloud Base + CDP Private Data Cloud Data Services) form

the complete CDP Private Cloud. Hence, any enterprise having either CDH or HDP installed

on-premises are requested to upgrade to CDP Private Cloud Base and if needed they can add

the Data Services Cluster.

- Common pre-configured workloads in CDP Private Cloud Base:

o Data Engineering: This is a use case of processing, developing and serve predictive

models. These include services like HDFS, YARN, YARN Queue Manager, Ranger,

Atlas, Hive on Tez, Spark, OOZie, Hue, and Data Analytics studio.

o Data Mart: Browse, query and explore your data in interactive way. And this

includes services HDFS, Ranger, Atlas, Hive and Hue.

o Operational Database: Real-time insights for modern data-driven business. And

include services as HDFS, Ranger, Atlas and HBase.

o Custom Services: In this case, you can choose your own services. When you are

installing a CDP Private Cloud Base Cluster, we usually install a single parcel called

Cloudera Runtime that contains all of the components.

- CDP Private Cloud Base and Tools: In addition to the Cloudera Runtime components, CDP

Private Cloud Base includes powerful tools to help manage, govern, and secure your cluster.

These includes following tools

o Cloudera Manager

o Apache Atlas

o Apache Ranger

- CDP Private Cloud Experiences: CDP Private Cloud Experiences include; CDP Cloud

Experience is renamed to CDP Private Cloud Data Services.

o Management Console

o Cloudera Data Warehouse (CDW)

o Cloudera Machine Learning

o Cloudera Data Engineering

Chapter-3: CDP Private Cloud Data Services

- CDP Private Cloud Data Services: This is a separate computing cluster running on a

container platform that can be deployed with CDP Private Cloud Base. CDP Private Cloud

Data Services always require Cloudera Manager and CDP Private Cloud Base. CDP Cloud

Experience is renamed to CDP Private Cloud Data Services. And include following services

and these are growing, tomorrow you may see more addition on this.

o Management Console

o Cloudera Data Warehouse (CDW)

o Cloudera Machine Learning (CML)

o Cloudera Data Engineering (CDE)

CDP Private Cloud Data Services is a framework which lets you deploy and use the growing

collection of Cloudera Data Services mentioned above. You can run CDP Private Cloud Data

services on one of the following platforms

o OpenShift

o Embedded Container Service

- Experiences Compute Services: Experiences Compute Services (ECS) is renamed to

Embedded Container Service (ECS).

- Public Cloud, Containers & Cloudera Data Engineering: Around 2020 Cloudera launched a

public cloud edition of CDE that made it possible to deploy Apache Spark Framework for

analyzing data on top of Kubernetes clusters.

- CDP-DE Private Cloud and Containers: Cloudera Data Engineering in CDP Private Cloud is

designed to be deployed in On-premises IT environments. And also, CDE can be deployed on

both the Redhat OpenShift platform based on Kubernetes and the Experience Compute

Service (ECS) cloud platform provided by Cloudera. IT teams can also burst workloads from

an on-premises IT environment to a public cloud whenever additional capacity is needed.

- Kubernetes and CDE: Workloads can scale independently of compute and storage and,

thanks to Kubernetes, can be managed via the same control plane. Workloads are deployed

as containers in virtual clusters that connect to a storage cluster dubbed CDP Base.

Collectively, those capabilities make it easier to add additional workloads into a multitenant

environment without adversely affecting the performance of the applications already

running. As Kubernetes becomes more widely employed, it’s becoming clearer that the

management of compute, data and applications will converge around a common control

plane. It may still require a team of IT professionals to manage those functions but the days

when IT teams needed to deploy a separate control plane for each function are coming to an

end. That control plane also provides the mechanism to unify DevOps and data operations

as the number of stateful applications deployed on Kubernetes clusters continues to steadily

increase.

- Kubernetes, stateless to stateful:

o Originally, most of the workloads deployed on Kubernetes clusters were stateless, in

that they relied on external system to store data. Increasingly, now organizations are

now deploying databases directly on Kubernetes clusters to more efficiently access

data stored on the cluster.

o Kubernetes provides access to storage using persistent volumes (PV). This makes it

possible to access data far beyond the lifespan of any given pod. Kubernetes

volumes allow users to mount storage units to expand how much data they can

share between nodes.

o Regular volumes will still be deleted if and when the pod hosting that particular

volume is shut down. The permanent volume, however, is hosted on its own pod to

ensure data remains accessible.

o Upon creation, the PV is bound to the pod that requested the PVC. IT teams can

then manage storage in Kubernetes via a PersistentVolumeClaim (PVC) function to

request storage; a PersistentVolume (PV) to manage storage life cycle and a

StorageClass function that defines different classes of storage services.

o The primary reasons IT teams are deploying stateful applications in Kubernetes

clusters is to ensure consistency, a desire to standardize on Kubernetes, simplify

management and enable developers to self-manage the IT environment.

o Stateful vs. stateless apps are conceptual and technological. More IT settings are

adopting Kubernetes clusters in greenfield edge environments without local

traditional storage solutions. In other circumstances, IT teams desire to consolidate

compute and storage administration to avoid hiring an external storage

administrator. Labor costs still dominate IT.

- Shifting Workload across Public and Private Cloud CDE Solution: IT teams can now build

applications on either platform and then run the, across a hybrid Cloud Computing

environment by first shifting workloads and then using tool such as Cloudera Replication

Manager to migrate data when required. CDE in CDP Private Cloud makes it easier to isolate

noisy data-intensive workloads to ensure service level agreements (SLAs) are met.

- CDP Private Cloud Management Console: In CDP Private Cloud Management Console is a

service for administering CDP and with this you can manage environments, data lakes,

environment resources, and users across all CDP services.

- Hybrid Data Platform: CDP Private Cloud is a Hybrid platform, because CDP Private Cloud

Base runs on your own Data Center and CDP Private Data Services can run on the Open Shift

as a container.

- OpenShift and Cloudera CDP:

o With Red Hat OpenShift, CDP Private Cloud will deliver self-service analytics and

enterprise-grade performance with the granular security and governance policies

Red Hat OpenShift and CDP Private Cloud will help to create an essential hybrid,

multi-cloud data architecture.

o Red Hat OpenShift as the preferred container solution for Cloudera Data Platform

(CDP) Private Cloud.

o Red Hat OpenShift’s position as the market-leading Kubernetes container platform,

combined with its 100 per cent open-source nature, make it ideal for CDP Private

Cloud.

o CDP Private Cloud, supported by Red Hat OpenShift, creates an enterprise data

cloud with a powerful hybrid architecture that separates compute and storage for

greater agility, ease of use, and more efficient use of private and public cloud

infrastructure.

- Hybrid, multi-cloud data architecture:

o Red Hat OpenShift and CDP Private Cloud will help to create an essential hybrid,

multi-cloud data architecture.

o It will enable teams to rapidly onboard mission-critical applications and run them

anywhere, without disrupting existing ones.

- CDP Stand Alone: You can deploy CDP Private Cloud Base as stand-alone to run your data

analytics. CDP Private Cloud Base is a complete data platform and stand-alone instance of

CDP for the on-premises data center that can be deployed on a choice of optimized

infrastructure (i.e Dell or Intel or IBM). CDP Private Cloud Base can also be deployed with the

CDP Private Cloud Data Services cluster to form the complete CDP Private Cloud.

- CDP Multi Cluster: CDP Private Cloud also supports a hybrid or multicluster solution, where

compute tasks can be separated from data storage, and where data can be accessed from

remote clusters. Where CDP Private Cloud Data Services, a separate computing cluster

running on a container platform that can be deployed with CDP Private Cloud Base. This

approach provides a foundation for containerized applications by managing storage, table

schema, authentication, authorization, and governance in CDP Private Cloud Base. It consists

of various components such as Apache HDFS, Apache Hive 3, Apache HBase, and Apache

Impala, along with many other components for specialized workloads. You can select any

combination of these services to create clusters that address your business requirements

and workloads.

- Rapid Provisioning: CDP Private Cloud Data Services users can rapidly provision and deploy

services such as Cloudera Data Warehouse, Cloudera Machine Learning, and Cloudera Data

Engineering using Cloudera Management Console and also this can be scaled up and scale

down.

- A Private Cloud Base cluster and container-based clusters are needed to implement CDP

Private Cloud Data Services. Use a dedicated RedHat OpenShift cluster or an Embedded

Container Service (ECS) for containers.

- Configuring Management Console, registering an environment, and establishing workloads

are the steps in Private Cloud deployment.

https://docs.cloudera.com/cdp-private-cloud/latest/overview/topics/cdppvc-benefits.html

-

Chapter-4: Cloudera Manager

- Cloudera Manager: Cloudera Manager is a component of CDP Private Cloud Data Services.

Cloudera Manager is an end-to-end application for managing clusters. With Cloudera

Manager, you can easily deploy and centrally operate the complete Cloudera Runtime stack

and other managed services. The application automates the installation and upgrade

processes and gives you a cluster-wide, real-time view of hosts and running services. The

Cloudera Manager Admin Console provides a single, central console where you can make

configuration changes across your cluster and incorporates a full range of reporting and

diagnostic tools to help you optimize performance and utilization. Cloudera Manager also

manages security and encryption functionality. This overview introduces the basic concepts,

structure, and functions of Cloudera Manager. A single instance of Cloudera Manager can

manage multiple clusters, including older versions of Cloudera Runtime and CDH.

- Cloudera Manager and CDP Private Cloud Base:

o CDP Private Cloud Base requires the Cloudera Manager to manage one or more

clusters and their configurations and to monitor cluster performance.

o We also use Cloudera Manager to manage, installations, upgrades, maintenance

workflows, encryption, access controls and data replication.

o We can use Cloudera Manager to manage Cloudera Enterprise CDH (Previous

version of Solutions) clusters.

o We can use Cloudera Manager to create a Virtual Private Cluster that allows you to

separate compute resources from data storage and to share data storage among

compute resources.

- Cloudera Manager Deployment: A configuration of Cloudera Manager and all the clusters it

manages.

https://docs.cloudera.com/cdp-private-cloud/latest/overview/topics/cdppvc-benefits.html

- Cloudera Manager-Dynamic Resource Pool: In Cloudera Manager, a named configuration of

resources and a policy for scheduling the resources among YARN applications or Impala

queries running in the pool.

- Cloudera Manager-Cluster: A set of computers or racks of computers that contains an HDFS

filesystem and runs MapReduce and other processes on that data. In Cloudera Manager, a

logical entity that contains a set of hosts, a single version of Cloudera Runtime installed on

the hosts, and the service and role instances running on the hosts. A host can belong to only

one cluster. Cloudera Manager can manage multiple clusters; however, each cluster can only

be associated with a single Cloudera Manager Server.

- Cloudera Manager-Host: In Cloudera Manager, a physical or virtual machine that runs role

instances. A host can belong to only one cluster.

- Cloudera Manager-Rack: In Cloudera Manager, a physical entity that contains a set of

physical hosts typically served by the same switch.

- Cloudera Manager-Service: Service is also referred as Service type and this is a managed

functionality in Cloudera Manager, which may be distributed or not, running in a cluster and

few example of this Hive, HBase, HDFS, YARN and Spark. Also, A Linux command that runs a

System V init script in /etc/init.d/ in as predictable an environment as possible, removing

most environment variables and setting the current working directory to /.

- Cloudera Manager-Service Instance: You can run one or more service instance for example

for HDFS service, you can have service instance like HDFS-1, HDFS-2. Hence, there are two

service instances are running for service type HDFS.

- Cloudera Manager-Role: This represent a category within a service type for example HDFS is

a service or service type and it has various roles (category) in it i.e. NameNode, Secondary

NameNode, DataNode, and Balancer. This is sometime known as Role type as well.

- Cloudera Manager-Role Instance: As name suggests it is an instance of the Cloudera

Manager Role. In Cloudera Manager, an instance of a role running on a host. It typically

maps to a Unix process. For example: "NameNode-h1" and "DataNode-h1".

- Cloudera Manager-Role Group: In Cloudera Manager, a set of configuration properties for a

set of role instances.

- Cloudera Manager-Host Template: A set of role groups in Cloudera Manager. When a

template is applied to a host, a role instance from each role group is created and assigned to

that host.

- Cloudera Manager: Gateway: A type of role that typically provides client access to specific

cluster services. For example, HDFS, Hive, Kafka, MapReduce, Solr, and Spark each have

gateway roles to provide access for their clients to their respective services. Gateway roles

do not always have "gateway" in their names, nor are they exclusively for client access. For

example, Hue Kerberos Ticket Renewer is a gateway role that proxies tickets from Kerberos.

The node supporting one or more gateway roles is sometimes referred to as the gateway

node or edge node, with the notion of "edge" common in network or cloud environments. In

terms of the Cloudera cluster, the gateway nodes in the cluster receive the appropriate

client configuration files when Deploy Client Configuration is selected from the Actions

menu in Cloudera Manager Admin Console.

- Cloudera Manager-Parcel: This a distribution format in binary which contains the compiled

code and meta-information such as a package description, version and dependencies.

- Cloudera Manager-Static Service Pool: In Cloudera Manager, a static partitioning of total

cluster resources-CPU, memory, I/O weight-across set of services.

- CDH and HDP: Both are the previous version of Hadoop Based Solutions.

o HDP: Hortonworks Data Platform, It was offered by Hortonworks.

o CDH: Cloudera Data Hub was an offering from Cloudera for Hadoop based solution.

- Previous and new Approaches for Data Processing: Technology infrastructure formerly

demanded the co-location of compute and storage to avoid costly network transfers. Now

the needs of high-performance analytics drive a move toward disaggregated compute and

storage, where each can be sized and scaled independently.

- Previous and new user experience: From a user experience viewpoint, it used to be

acceptable to deploy and run in timeframes of weeks, months, or even quarters. Now the

expectation is to be able to spin up services in minutes, give users their own clusters, and get

insights quickly.

- Privacy, security and governance in previous and new approaches: From the privacy,

security, and governance perspectives, the primary concerns were formerly about network

perimeter and physical access controls. Now, with the entire data life cycle being managed,

operators need fine-grained authentication and authorization at the workload and data

layers.

- Why Platform:

o The plethora of "apps" available for mobile devices. Applications are ready to

provide value almost instantly after installation. Think of something like a mapping

application with navigation capability. You install the app, turn on location services,

enter an address and you are on the way in less than five minutes.

o Conversely, platforms are tools for application developers. Platforms do almost

nothing for end users after installation. Application developers must first configure

and build applications using the platform before end users begin to recognize value.

o Developers have been using platforms for decades. There are some classes of

applications that require core services that are complex to develop but universally

useful. In those cases, it makes sense for a group of experienced system developers

to build a platform for use by the larger application developer community.

o Many developers lack the skills to do it on their own. Some of 6 the first and most

successful examples are relational database management systems (RDBMS). These

systems include IBM DB2, Oracle, and Microsoft SQL Server. The RDBMS category

has expanded to include many more platforms over the last several decades.

Millions of application developers and billions of end users have benefitted from

software applications that are developed using these RDBMS platforms.

o The most successful data platforms are both robust and flexible. Millions of

application developers, who otherwise could not build the scalable foundations that

are required to support enterprise class data management, can use them.

"Reinventing the wheel" has always been costly and rarely produces superior modes

of transportation. Despite that history, many organizations spend many months or

years contemplating and prototyping proprietary data platforms.

o Enterprise developers may be encouraged that most of the hyperscale Internet

companies have developed proprietary data platforms to meet their specific

industry and scale challenges. Some of these companies include Airbnb, Facebook,

LinkedIn, Lyft, Netflix, Twitter, and Uber.

o These organizations differ from most traditional enterprise organizations in several

key ways. They were born "cloud native", meaning the platforms that they have

developed constitute the business. They can recruit and retain top talent with the

backgrounds that are required to build platforms. Also, they are constantly adding

the already large initial development investments because their data platform is

critical to their main value proposition.

- Data Platform: Either build your own proprietary data platform or adopt full featured

commercial and open-source data platform. There are various Data Platform terms available

based on the solution which includes

o Cloudera Data Platform

o Big Data Platforms

o Data Management Platforms

o Data Analytics Platforms

- Data Platform and Applications: Most of the common use case is data pipeline for Data

Platform which includes various steps like below

o Collect the Data

o Apply Data Engineering on the Data

o Create Reports from the data

o Running Operations on the Data

o Apply Machine Learning and AI on the Data

Below image shows these steps

Data platforms that meet all or most of the needs of your data pipelines simplify the process of

getting from raw source data to insights. Whenever data in the pipeline must move between

platforms there is a real possibility of introducing complexity both in the development phase and in

sustaining operations.

- Data Management:

o Some file systems are better suited to handling lots of small files while others are

better at fewer large files.

o For audio and other "stream based" data, data engineers have a choice of buffer size

and file creation characteristics that must be matched to the capabilities of the

platform and may also impact the complexity of using the data for analysis.

o Most digital data has some type of structure or common properties when it is

committed to a storage medium. Some examples include:

 Files have a size property and a filetype (application, text, binary).

 Text files have an encoding scheme.

 Images have dimensional size and color depth encoding.

 Audio has bit rate and frequency range.

o These characteristics impact the requirements for a data platform.

o If you have more knowledge about the final stages of how your analysis pipelines

look, you can build more intelligence into the early stages of data management.

o Although storing high-fidelity data when it is not required for analysis may seem

wasteful, think of it as an insurance policy to protect against changing analysis

requirements.

o Another aspect of data management, that surprises IT professionals, is the storage

that is required to manage multiple copies of data being used for analysis.

o Even the most seasoned data science professionals consume many copies of data

that by some appearances are identical. There are several important reasons why

this situation is necessary:

 Both report and model development must be isolated from uncontrolled

change. This initial copy is typically a direct copy of source with little or no

transformation. This measure ensures that the developers can always return

to a ground truth version of the data. That data can be used to compare

alternate transformation schemes with repeatability.

 Managing alternate transformations. One common pattern is grouping and

counting events by various factors such as time, geography, market

segment, and so on, as well as transformations to clean and regularize the

data.

 Efficiency. Complex data transformation pipelines should get developed in

stages. It may be too inefficient to go all the way back to source data for

testing an incremental set of tasks late in the pipeline. Data scientists may

prefer to stage intermediate steps to reduce the complexity and time

investment to run the pipeline from the absolute beginning.

o Another requirement that derives in part from the data copy management challenge

is tracking metadata that are associated with transformation logic and history.

Creating many copies of the same data may seem reasonable in the heat of shipping

a project, but it will be difficult to ascertain why six months later.

o There is a growing interest in platforms that include "feature stores". The concept is

to both better track logic and metadata and to promote a more disaggregated

approach to data management

o If the only difference between two datasets is how the customer dimension is

managed, you should keep two copies of that feature, rather than two copies of the

entire dataset.

o Reusing transformation logic to manage frequently used dimensions - like customers

and products - independently from all the other features, and all the other analysis

datasets in which they are used, could greatly simplify data management.

- Example Use Cases:

o The potential list of use cases that a full-featured data platform can address is nearly

limitless.

o The following list gives some sense of the common use cases

 Customer 360 Analytics

 Retail Inventory and Sales Analysis

 Manufacturing Operational Analysis

 eCommerce Fraud Prevention

 Network Security intelligence

 Data Warehouse Consolidation

 Discount Pricing Optimization

 Financial Services

 Insurance Industry predictive analytics

 Recommendation Engines

 Social Media analysis and engagement

o A good business practice is to maintain an active list of potential use cases where

the availability of a data platform can enhance development.

o Assess the list so that you do not tackle too many use cases that are high-priority

and high-investment too early.

- Financial Services use Cases:

o Financial services encompass a wide range of business models, for example

 Consumer and Commercial Banking

 Individual Wealth Management

 Primary or secondary capital markets

o The importance of relationship management is shared across all these businesses

and therefore has been a key focus area for analysis.

o Virtually all midsized and larger financial services organizations have one or more

data platforms.

o The intense pressure to compete with other players makes finding, securing,

keeping and nurturing relationships with customers a priority that drives profit.

o There is also a requirement to manage investment risk and assure compliance with

all regulatory requirements, which often involve multiple, overlapping jurisdictions.

o While personal relationship still matter, data driven modelling and reporting across

multiple channels including mobile, online phone or branch agent are a must-have

for these organizations.

o Organizations that build trust by arming the organization with data-driven

information increase the confidence of their customers, along with wallet share and

lifetime value.

o To achieve that on a global scale, you must leverage big data and predictive analytics

using a proven and modern hybrid data platform.

- Manufacturing use case:

o Industry 4.0 is an emerging term that means small manufacturing.

o Advanced technologies are combined with traditional manufacturing and industrial

practices to improve operational efficiency across the board.

o The innovations and documented successes of Industry 4.0 initiatives are

encouraging more manufacturing companies to adopt Industrial IoT (IIoT) concepts

and technology.

o Such adoptions transform product development, supply chains, and manufacturing

operations.

o Many recent case studies show that connecting analysis of smart products, design

engineering, factory floor operations, and customer experience enable faster time-

to-market, improved product quality, and scaling production output while reducing

waste and operating costs.

o Connected products are a key initiative of Industry 4.0.

o The connectivity these products provide drives customer satisfaction and revenue

while reshaping the relationship between people and products.

o Achieving these benefits requires the abilities to ingest, process, and analyze

sometimes massive volumes of IoT data.

o This data processing scale enables manufacturers the access to near real-time

customer feedback to identify product quality issues.

o Another growing area of Industry 4.0 is intelligent supply chain management.

Disruptions and delays in a critical supply chain will ripple through an organization

from sales to operations.

o Many manufacturers are using near real-time data, analytics, and machine learning

to ensure that supply chains are functioning well while risk is managed end-to-end.

o Combined with a modern data platform that supports advanced analytics, including

machine learning capabilities, required investments to take advantage of these

latest innovations in manufacturing include:

 Special Purpose Sensors

 GPS

 RFID

 Production Stream Data

- CDP Data Flow: IT teams can also programmatically deploy complex pipelines with job

dependencies using Apache Airflow, open-source software based on directed acyclic graphs

(DAGs), that make it possible to visualize and monitor pipelines running in production

environments.

- DevOps and CDP: Available Cloudera application programming interfaces (APIs) and

command-line interfaces (CLIs) make it simpler to integrate its platform within DevOps

workflows.

Chapter-5: Apache Atlas
- Apache Atlas and CDP Private Cloud Base:

o CDP Private Cloud Base includes the Apache Atlas.

o Apache Atlas is used to provide governance for your data.

o Atlas serves as a common metadata store that is designed to exchange metadata

both inside and outside of the Hadoop stack.

- Apache Atlas and Apache Ranger:

o Close integration of Atlas with Apache Ranger enables us to define, administer, and

manage security and compliance policies consistently across all components of the

CDP stack.

- Apache Atlas and Cloudera Navigator:

o In previous version of Cloudera Enterprise, Atlas is replacing Cloudera Navigator

Metadata server and provides following capabilities

 Creating Flexible Metadata models.

 Searching Entity using model attributes, classification (i.e. tags) and free

text.

 Lineage across entities based on processes applied to the entities.

Chapter-6: Apache Ranger

- Cloudera Private Base and Apache Ranger

o Following are the features provided by Apache Ranger (AAA) in CDP Private Base

Cluster.

 Auditing

 Authentication

 Authorization

o Ranger is a centralized framework for collecting and accessing audit history and

reporting data even includes filtering on various parameters.

o Ranger helps in enhancing audit information obtained from CDP components and

provides insights through this centralized reporting capability.

o Ranger controls access control through a user interface to guarantee policy

consistency among CDP Private Cloud Base components.

o Security administrators may set database, table, column, and file security rules and

manage LDAP-based group and user permissions.

o Rules based on dynamic conditions such as time or geolocation can also be added to

an existing policy rule.

o The Ranger authorization model is pluggable and can be easily extended to any data

source using a service-based definition.

o Ranger replaces Sentry and Navigator Audit Server from previous version of

Cloudera Enterprise.

- Apache Ranger and fine-grained access controls: Apache Ranger provides following

capabilities

o Dynamic Row filtering

o Dynamic Column Masking

o Attribute Based Access control

o SparkSQL fine-grained access control.

- Apache Ranger and Rich Policy features: This provides

o Allow/Deny constructs

o Custom policy conditions

o Context enrichers

o Time bound policies

o Atlas integration

o Extensive Access Auditing with rich event metadata

Chapter-1: Apache HDFS

Overview

Hadoop Distributed File System, often known as HDFS, is a file system that is based on Java and

offers scalable data storage.

- NameNode: The NameNode of an HDFS cluster is responsible for managing the namespace

of the cluster.

- DataNode: while the DataNodes are used to store data.

HDFS was designed to span huge clusters of commodity systems. The Hadoop Distributed File

System (HDFS) serves as the platform's data management layer. YARN is responsible for the

administration of the resources, whereas HDFS is in charge of storage.

HDFS is a distributed storage system that is scalable, fault-tolerant, and works closely with a broad

range of applications that access data concurrently. By spreading storage and computing among a

large number of servers, the total storage resource may expand in a linear fashion in response to

increased demand.

Because HDFS can be scaled up or down depending on the requirements, it is truly quite difficult to

find any substitute for HDFS that is suitable for storing Big Data. Hadoop is being used by a

significant number of the largest corporations in the world. Hadoop is used by several companies,

including Amazon, Facebook, Microsoft, Google, Yahoo, IBM, and General Electrics, to store and

analyse enormous volumes of data.

HDFS cluster components and their respective roles

The primary components of an HDFS cluster are referred to as the NameNode and the DataNodes

respectively.

The NameNode: is responsible for managing the metadata of the cluster, which includes the file and

directory hierarchies, rights, changes, and quotas for disc space. The contents of the file are

separated into several data blocks, with each block being copied at a number of different

DataNodes.

The NameNode keeps monitoring on the total number of blocks that have been replicated. In

addition to this, the NameNode stores the full namespace image in RAM and is responsible for

maintaining the namespace tree as well as the mapping of blocks to DataNodes.

In order to prevent single point of failure, High-Availability (HA) clusters include a backup NameNode

for the current one. And clusters synchronise the active and standby NameNodes by using

JournalNodes in the process.

Advantages of using HDFS

The following are some of the advantages provided by HDFS, which are directly responsible for the

effective storage and high availability of data inside the cluster:

- Rack awareness: refers to the physical location of a node while assigning storage and

scheduling jobs.

- Hadoop reduces the amount of data that has to be moved by moving computational

activities directly to HDFS. Whatever computation Hadoop initiates sends all the

computation near to data i.e. on DataNode rather than getting data to the compute node,

this is the biggest advantage and reduce the network traffic. This results in a very

considerable reduction in the overall amount of network I/O and offers extremely high

aggregate bandwidth.

- Utilities: Conduct a real-time analysis of the state of the file system's health and rebalance

the data throughout the various nodes.

- Standby NameNode is a NameNode that offers high availability and provides redundancy

(HA).

NameNodes

NameNodes are responsible for maintaining the HDFS namespace tree as well as a mapping of file

blocks to the DataNodes that are used to store the data.

Only one main NameNode is necessary for a basic HDFS cluster. This primary NameNode is backed

up by a backup NameNode that compresses the NameNode edits log file on a periodic basis. The

NameNode edits log file is a list of HDFS metadata alterations. Because of this, the amount of disc

space used by the log file on the NameNode is decreased, which in turn results in a shorter length of

time required to restart the main NameNode. There are always two NameNodes present in a high-

availability cluster: an active and a backup.

DataNodes

NameNode daemon is responsible for managing the data in a Hadoop cluster, and DataNodes are

the nodes that hold the data. The data in a file is copied and stored on several DataNodes to ensure

its integrity and to facilitate the execution of localised computations in close proximity to the data.

It is important for a cluster's DataNodes to have a consistent appearance. Problems may arise if they

are not consistent with one another. For instance, jobs may fail to complete if DataNodes have a

lower total amount of memory because they reach capacity more rapidly than DataNodes with a

higher total amount of memory.

Important: HDFS was set up with a replication factor of three by default. That is, there are always

three copies of the data kept on hand at all times. When you have at least three DataNodes,

Cloudera recommends that you should not select a lower replication factor than the default value of

three. Data loss might result from having a lower replication factor.

JournalNodes

JournalNodes are used to keep active and backup NameNodes in high-availability clusters

synchronised with one another. The active NameNode is the one that makes changes to the HDFS

namespace information and publishes such "edits" to each JournalNode. Whenever there is a

failover, the standby NameNode will promote itself to the active state after first applying all of the

updates that were made in the JournalNodes.

The Architecture of HDFS

There is only one NameNode that is responsible for storing metadata, whereas numerous

DataNodes are in charge of doing the actual storage operations. In order to offer fault tolerance, the

nodes in the cluster are organised into racks. Additionally, copies of data blocks are kept on separate

racks within the cluster.

NameNode holds metadata, whereas DataNode contains real data. Due to the fact that NameNode

is the central component of the cluster, all interactions between the client and the cluster must take

place via NameNode.

Within the cluster, there are a number of DataNodes, each of which has its own local disc on which it

stores HDFS data. DataNode will occasionally communicate through a "heartbeat" message to

NameNode to let it know that it is still active. In addition to this, it copies the data to additional

DataNodes in accordance with the replication factor.

Hadoop File System (HDFS) Features

Let's have a look at some of Hadoop Distributed File System's more interesting features right here in

the HDFS lesson.

Storage That Is Distributed: HDFS stores data in a distributed fashion. It then saves each individual

piece of data on a distinct DataNode inside the cluster after first dividing the data into smaller

chunks. In this approach, the Hadoop Distributed File System provides MapReduce with a means by

which it may process a fraction of enormous data sets that have been partitioned into blocks in a

manner that is parallel across numerous nodes. Hadoop revolves on the MapReduce programming

model, while HDFS is the component that makes all of these other features possible.

Blocks: HDFS breaks down massive files into manageable sections called as blocks. The smallest unit

of data that may be stored in a filesystem is called a block. As a client or admin, you do not have any

influence on the block's properties, such as its placement. NameNode is the one that makes all of

these decisions.

HDFS default block size is 128 MB. We have the ability to adjust the size of the block to meet our

specific requirements. This is in contrast to the filesystem used by the operating system, where the

block size is 4 KB.

If the data size is less than the HDFS block size, then the block size will be equal to the data size.

If the size of the file, for instance, is 129 megabytes, then there will be 2 blocks produced for it. The

default size of one block will be 128 megabytes, while the other block will only be one megabyte

since using 128 megabytes would be a waste of space. Hadoop is smart enough to avoid wasting the

remaining 127 megabytes of storage space. Therefore, it is only allocating a 1 MB block for 1 MB

worth of data.

A significant benefit of storing data in such a block size is that it reduces the amount of time spent

seeking on the disc. Another benefit is that the mapper only processes one block at a time when it

performs its operations. So, one mapper handles enormous data at a time.

The Act of Repeating: Hadoop HDFS produces two identical copies of each block it stores. This

process is referred to as replication. The data for each block is copied and kept on separate

DataNodes distributed across the cluster. It tries to store at least one duplicate on a distinct rack for

each original.

What exactly is a Rack?

Racks are used to organise the DataNodes. A single switch connects all of the nodes in a rack. Hence,

data may be accessed from another rack even if an individual switch or the whole rack becomes

inoperable.

As previously discussed, the default replication factor is 3, but it is possible to alter this to the

appropriate values according to the demand by modifying the configuration files (hdfs-site.xml).

High Availability: Data availability can be achieved by replicating data blocks and storing them on

numerous nodes distributed across the cluster.

Data Reliability: Data is replicated in HDFS, as we have seen previously. Because of replication,

blocks maintain a high availability even in the event that a node or piece of hardware fails. In the

event that the DataNode fails, the block will still be available from any other DataNode that has a

duplicate of the block. Additionally, even if the rack collapses, the block will still be accessible on the

alternative rack. This is how HDFS ensures the integrity of its data storage while also providing fault

tolerance and high availability.

Fault Tolerance: Hadoop and the other components of the ecosystem may benefit from the fault-

tolerant storage layer that HDFS offers.

HDFS is designed to run on commodity hardware, which refers to systems that have average

configurations and a high likelihood of crashing at any given moment. Because of this, the HDFS

system duplicates data and stores it in many locations. This helps to ensure that the system as a

whole is very resilient to errors.

Scalability: Scalability refers to the capacity to increase or decrease the size of the cluster. There are

two methods in which we can grow Hadoop HDFS.

- Vertical Expansion or scalability: We are able to install more drives on the data nodes. In

order to do this, we need to make changes to the configuration files and add entries that

match to the newly inserted drives. Increasing disk size is a vertical scalability.

- Horizontal Scalability: is an additional method of scalability that consists of the capability of

adding more nodes (Data Nodes) to the cluster dynamically and without incurring any

downtime. This technique is referred to as horizontal scaling. We are able to add as many

nodes as we like to the cluster at any one moment, in real time, without experiencing any

kind of outage.

Access to application data with a high throughput: The Hadoop Distributed File System enables

users to access application data with a high throughput. The quantity of work completed in a certain

length of time is referred to as the throughput. It is often used as a method for measuring the

system's overall performance, and it provides a description of the rate at which data is retrieved

from the system.

When we wish to carry out a procedure or an operation using HDFS, the work is partitioned and

distributed over a number of different computers. Therefore, each of the systems will independently

and simultaneously carry out the duties that have been allocated to them. Because of this, the task

will be finished in a relatively short amount of time. Therefore, HDFS provides a strong throughput

because of its parallel data reading capabilities.

Read Operations on the HDFS

When a client wants to read any file from HDFS, the client has to communicate with NameNode

since NameNode is the only location that keeps metadata about DataNodes. This means that

whenever a client wants to read any file from HDFS, the client needs to interact with NameNode.

NameNode is responsible for specifying the address of the slaves or the place where the data is kept.

The client will engage in interaction with the DataNodes that have been configured and read the

data from those locations. In order to ensure the client's authenticity and safety, the NameNode

sends it a token, which the client then presents to the DataNode before beginning to read the file.

In the Hadoop HDFS read operation, the client must first interact with the NameNode in order to

read data that is stored in HDFS if the client wishes to read data that is stored in HDFS. Therefore,

the client engages in interaction with the API of the distributed file system and submits a request to

NameNode to provide the block location. As a result, NameNode examines the client to determine

whether or not they have enough credentials to access the data. If the client has the necessary

credentials, then the NameNode will provide the address of the DataNode at which the data is kept.

Along with the address, NameNode also provides the client with a security token. In order to access

the data, the client is required to provide the security token to DataNode for the purposes of

authentication.

When a client travels to DataNode for the purpose of reading the file, DataNode first checks the

token, and then it grants permission to the client to read that specific block. Following this step, a

client will access the input stream and begin reading data from the DataNodes that have been

configured. The client obtains the data in this fashion by reading it straight from the DataNode.

In the event that the DataNode unexpectedly goes down while a file is being read, a client will once

again travel to the NameNode, and the NameNode will share another location with the client where

that block may be found.

HDFS Operation for Writing

As can be observed when the client is reading a file, it is necessary for the client to interface with

NameNode. In a similar way, in order for the client to write a file, they need to communicate with

the NameNode.

NameNode gives the client the address of the slaves on which data has to be written in order for the

client to complete the transaction.

After the client has completed writing the block, the slave will begin copying the block into another

slave, which will then copy the block and send it to the third slave. When the standard replication

factor of three is used, this is the result that is obtained. Once all of the necessary replications have

been performed, it will send a final acknowledgement to the client.

Any time a client wants to write any data, it is required to communicate with the NameNode in

order to do so. The client then communicates with the API for the distributed file system and

requests that NameNode transmit a slave location.

The client will then begin writing the data by interacting with the DataNode at where the data has to

be written and will begin writing the data via the FS data output stream. Following the completion of

writing and replicating the data, the DataNode will send an acknowledgement to the client alerting

them that the data has been written in its entirety.

When the client has finished writing to the first block, the first DataNode will immediately duplicate

that block to any additional DataNodes that are connected to it. Therefore, after it has received the

block, DataNode will begin the process of copying that block to the third DataNode. The third

DataNode will send an acknowledgement to the second DataNode, the second DataNode will send

an acknowledgment to the first DataNode, and finally, the first DataNode will send the final

acknowledgment.

The client only sends one copy of the data regardless of the replication factor, but the DataNodes

are responsible for replicating the blocks. Therefore, writing a file on Hadoop's HDFS does not incur

any additional costs since many blocks of the file are written in parallel across various DataNodes.

Utilizing Cloudera Manager to relocate the JournalNode, which updates the directory for a role

group: You have the ability to modify the location of the edit’s directory for each JournalNode that is

a part of the JournalNode Default Group, depending on the needs of your organisation.

By using Cloudera Manager, you may move the JournalNode edits directory for a role instance:

You are free to adjust the location of the edits directory for one JournalNode instance in accordance

with the specifications of your project.

Bringing the contents of JournalNodes into synchronisation: You have the ability to synchronise the

data that is included inside the JournalNodes that are part of your CDP Private Cloud Base cluster.

When this feature is enabled, it helps to preserve consistency in the contents of all of the

JournalNodes that are distributed across the cluster. For instance, if the contents of a JournalNode

become inconsistent, it is possible for that JournalNode to automatically duplicate the contents of

the other JournalNodes in the cluster in order to restore consistency.

HDFS FAQ

Question-1: How NameNode handles the management of blocks on a DataNode that has failed?

Answer: After a certain amount of time has passed without any heartbeats, a DataNode is said to be

dead.

Question-2: To replace a disc on a DataNode host, follow these steps?

Answer: You have the ability to repair defective discs that are hosted on the DataNode in your CDP

Private Cloud Base cluster. Before you can replace the malfunctioning disc, all managed services

need to be stopped, and the DataNode role instance has to be decommissioned.

Question-3: How do you take out one of the DataNodes?

Answer: Make sure that all of the conditions for deleting a DataNode have been completed before

you attempt to remove it.

Question-4: How do you put an end to irregularities in the blocks?

Answer: You may get information on inconsistencies with the HDFS data blocks by using the output

of the hdfs fsck or hdfs dfsadmin -report commands. These inconsistencies include missing,

misreplicated, or underreplicated blocks. You have the flexibility to choose from a variety of

approaches to remedy these discrepancies.

Question-5: How do you use the Cloudera Manager to add storage directories?

Answer: Using Cloudera Manager, you may create a new storage directory and choose the kind of

storage the directory will use.

Question-6: How do you use Cloudera Manager, get rid of the storage folders?

Answer: Using Cloudera Manager, you are able to delete already existing storage folders and define

new directories.

Question-7: How do you set up the storage balancing configuration for DataNodes?

Answer: You have the ability to configure HDFS to distribute writes on each DataNode in a way that

maintains a consistent level of available storage across all disc volumes on that DataNode.

Question-8: How do you utilize Cloudera Manager, carry out a disc hot swap on the DataNodes?

Answer: You won't need to restart a DataNode in order to change discs on the CDP Private Cloud

Base cluster you're using. The term for this practise is "hot switch."

Question-9: What is HDFS used for?

Answer: Hadoop Distributed File System also known as HDFS is used for storing structure and

unstructured data in distributed manner by using commodity hardware.

Question-10: What is Hadoop Distributed File System and what are its components?

Answer: Hadoop HDFS is a distributed file-system that stores data on commodity machines,

providing very high aggregate bandwidth across the cluster.

Components of HDFS: HDFS comprises of 3 important components NameNode, DataNode and

Secondary NameNode.

HDFS operates on a Master-Slave architecture model where the NameNode acts as the master node

for keeping a track of the storage cluster and the DataNode acts as a slave node summing up to the

various systems within a Hadoop cluster.

Question-11: What is NameNode and DataNode in HDFS?

Answer: Namenode is the master and DataNodes are slaves NameNode manages the filesystem

namespace. It maintains the filesystem tree and the metadata for all the files and directories in the

tree.

DataNodes are the workhorses of the filesystem. They store and retrieve blocks when they are told

to (by clients or the NameNode), and they report back to the NameNode periodically with lists of

Blocks that they are storing. Without the NameNode, the filesystem cannot be used.

Question-12: Why Hadoop uses filesystem for storage?

Answer: HDFS is built to support applications with large data sets, including individual files that

reach into the terabytes. File systems are more affordable to handle huge amount of data.

Question-13: What is meant by Data node?

Answer: Data node is the slave deployed in each of the systems and provides the actual storage

locations and serves read and writer requests for clients.

Question-14: What is daemon?

Answer: Daemon is the process that runs in background in the UNIX environment. In Windows it is

‘services’ and in DOS it is ‘TSR’.

Question-15: What is meant by heartbeat in HDFS?

Answer: Data nodes and task trackers send heartbeat signals to Name node and Job tracker

respectively to inform that they are alive. If the signal is not received it would indicate problems with

the node or task tracker.

Question-16: Is it necessary that Name node and job tracker should be on the same host?

Answer: No! They can be on different hosts.

Question-17: What is meant by ‘block’ in HDFS?

Answer: Block in HDFS refers to minimum quantum of data for reading or writing. Default block size

is 128 MB in HDFS.

Question-18: Can blocks be broken down by HDFS if a machine does not have the capacity to copy as

many blocks as the user wants?

Answer: Blocks in HDFS cannot be broken. Master node calculates the required space and how data

would be transferred to a machine having lower space.

Question-19: How is data replicated in HDFS?

Answer: HDFS is designed to be fault-tolerant. Large HDFS data files are split into smaller chunks

called blocks and each block is stored in multiple DataNodes across the cluster. The block size and

the replication factor can be configured per file.

HDFS is rack aware for multi-clustered environments, and takes this into consideration when

replicating blocks for fault-tolerance. HDFS ensures that the blocks are replicated on DataNodes that

are on different racks, so if a rack goes down the data is still available from the DataNode on the

other rack.

Question-20: Explain how indexing in HDFS is done?

Answer: Hadoop has a unique way of indexing. Once the data is stored as per the block size, the

HDFS will keep on storing the last part of the data which say where the next part of the data will be.

Chapter-2 Apache Ozone

Overview

Apache Ozone is a tool or product that is used to implement Hadoop's Object Storage architecture.

As we know that Hadoop Distributed File System (HDFS) is used as a native storage for storing data

in Hadoop ecosystem. However, Hadoop Distributed File System (HDFS) is a block storage system

that was created by Apache and designed to be used as a storage layer on the Hadoop architecture.

Object storage is the name given to the new storage model that Ozone, that is also a storage engine

for Hadoop ecosystem. Within the same Hadoop cluster, it can co-exist with HDFS to offer file store

and object store capability. Similar to AWS S3 and Google Cloud storage, you can create object

storage for your Hadoop Cluster as well and it can store trillions of files on Ozone, and they can

access those files just as if they were stored on HDFS.

Ozone also supports the scalability and tiny file issues that HDFS has. Ozone can be easily integrated

into already existing Hadoop installations, and applications like Hive and Spark can run without

requiring any adjustments.

Apache has built an object storage system known as Ozone. It is designed to be used inside the

architecture in a manner similar to that of HDFS. Specifically, as a storage layer. Below image shows

Comparison between Object Storage and Block Storage (HDFS) in graphical form (Ozone).

Block storage: Fragments the data into smaller chunks, which are subsequently stored

independently as blocks. The Storage Area Network (SAN) will position the data blocks in the

locations where they will be used most effectively. Each block is assigned a unique identification.

Because of this, data may be saved wherever it will be more easily accessible, rather than inside the

same system. The access to data in block storage does not depend on a single, centralised route.

Because of this, the information may be accessed very rapidly.

Storage of Objects: Files are fragmented into smaller parts and dispersed over various devices as

part of the object storage system, which has a flat structure. Volumes and containers are used for

object storage in place of traditional blocks. The data is stored in volumes, which are modular

storage containers that are completely self-contained. Every item included inside it is assigned a

distinct identification in addition to the information that details the data. The unique identifier in

block storage is made up of two IDs, as opposed to only one. One that tells you which bucket the

data is kept on and where it is stored.

And another one that specifies the location inside the bucket where the data is being kept. The

metadata may be tailored and specified to the user's specifications. It includes information such as

age, access permissions, and security. Object Storage offers excellent value for the money. You are

only responsible for paying for what you use. It is not difficult to scale up.

Large quantities of static and unstructured data are ideal candidates for this sort of storage. Once

they have been generated, objects cannot have their properties changed in any way, which is one of

the most significant drawbacks. It is required to create a whole new object if you want to make

changes to an existing one. Writing objects is a more time-consuming procedure than writing to

block storage, which is another reason why standard structured databases do not perform well with

object storage.

Apache Ozone is a distributed object store that is scalable, redundant, and optimised for the

demands associated with large data. Applications that make use of frameworks such as Apache

Spark, Apache YARN, and Apache Hive function natively on Ozone without requiring any changes.

This is in addition to Ozone's ability to scale to billions of objects of varied sizes. Ozone offers a

Hadoop-compatible file system interface and has native support for the S3 application programming

interface. The CDP Private Cloud Base deployment is the common location where Ozone may be

found.

Ozone is made up of three essential components that are used for storing information: volumes,

buckets, and keys. Each key is a component of a bucket, and the buckets together make up a

volume. The creation of volumes is restricted to administrators only. Regular users are able to build

buckets in varying quantities, depending on the needs that they have. Within these buckets, Ozone

maintains data in the form of keys.

Ozone saves the accompanying data on DataNodes in chunks that are referred to as blocks. This

happens whenever a client submits a key. As a result, any key may open anywhere from one to

several different chests. Multiple blocks that are not connected to one another may coexist in the

same storage container inside of a DataNode.

HDFS is the de facto large data file system. It's easy to forget how scalable and reliable HDFS is. Our

customers operate clusters with thousands of nodes that serve thousands of concurrent clients.

HDFS operates best with huge files, tens to hundreds of megabytes. HDFS has a modest file capacity

and struggles with 400M files. HDFS-like storage that can handle billions of little files is in demand.

Ozone can handle tiny and big files. Ozone is an Object Store whereas HDFS is POSIX-like.

Ozone architecture

Ozone can be co-located with HDFS with single security and governance policies for easy data

exchange or migration and also offers seamless application portability. Ozone has a scale-out

architecture with minimal operational overheads. Ozone separates management of namespaces and

storage, helping it to scale effectively. The Ozone Manager (OM) manages the namespaces while the

Storage Container Manager (SCM) handles the containers.

The following diagram shows the components that form the basic architecture of Ozone:

Hadoop Distributed Data Store: Ozone is built on a highly available, replicated block storage layer

called Hadoop Distributed Data Store (HDDS).

Blocks: Blocks are the basic unit of storage. In Ozone, each block is of 256 MB in size. A collection of

blocks forms a storage container. The SCM allocates blocks inside storage containers for the client to

store data.

Storage Containers: A storage container is a group of unrelated blocks managed together as a single

entity. A container exists in a DataNode and is the basic unit of replication, with a capacity of 2 GB to

16 GB.

The Storage Container Manager performs multiple critical functions for an Ozone cluster. SCM

manages the addition and removal of DataNodes, and allocates storage containers and blocks. SCM

also manages block collections, ensuring that the blocks maintain the required level of replication.

SCM allocates blocks to clients through OM for read and write operations. In addition, SCM executes

recovery actions when faced with DataNode or disk failures.

DataNodes: DataNodes contain storage containers comprising of data blocks. The SCM monitors

DataNodes through heartbeats.

Ozone Manager: The Ozone Manager (OM) is the metadata manager for Ozone. The OM manages

the following storage elements:

 The list of volumes for each user

 The list of buckets for each volume

 The list of keys for each bucket

The OM maintains the mappings between keys and their corresponding Block IDs. When a client

application requests for keys to perform read and write operations, the OM interacts with the SCM

for information about blocks relevant to the read and write operations, and provides this

information to the client. In addition, the OM also handles metadata operations from the clients.

The Ozone Manager (OM) is a highly available namespace manager for Ozone. OM manages the

metadata for volumes, buckets, and keys. OM maintains the mappings between keys and their

corresponding Block IDs. When a client application requests for keys to perform read and write

operations, OM interacts with SCM for information about blocks relevant to the read and write

operations, and provides this information to the client. In addition, OM also handles metadata

operations from the clients.

Pipelines: Pipelines determine the replication strategy for the blocks associated with a write

operation.

Recon Server: Recon is the management interface for Ozone. Recon provides a unified management

API for Ozone.

How Ozone manages read operations: The client requests the block locations corresponding to the

key it wants to read. The Ozone Manager (OM) returns the block locations if the client has the

required read privileges.

The following steps explain how Ozone manages read operations:

1. The client requests OM for block locations corresponding to the key to read.

2. OM checks the ACLs to confirm whether the client has the required privileges, and returns

the block locations and the block token that allows the client to read data from the

DataNodes.

3. The client connects to the DataNode associated with the returned Block ID and reads the

data blocks.

How Ozone manages write operations: The client requests blocks from the Ozone Manager (OM) to

write a key. OM returns the Block ID and the corresponding DataNodes for the client to write data.

The following steps explain how Ozone manages write operations:

1. The client requests blocks from OM to write a key. The request includes the key, the pipeline

type, and the replication count.

2. OM finds the blocks that match the request from SCM and returns them to the client.

If security is enabled on the cluster, OM also provides a block token along with the block location to

the client. The client uses the block token to connect to the DataNodes and send the command to

write chunks of data.

1. The client connects to the DataNodes associated with the returned block information and

writes the data.

2. After writing the data, the client updates the block information on OM by sending a commit

request.

3. OM records the associated key information.

Notes

a. Keys in Ozone are not visible until OM commits the block information associated

with the keys. The client is responsible for sending the key-block information to OM

after it has written the blocks on the DNs via a commit request.

b. If OM fails to commit block information for keys after they have been written, for

example, client was unable to send the commit request OM because the write job

failed, the keys would not be visible but the data would remain on disk.

Tenets: Ozone's design followed these guidelines:

 Consistent: Consistency facilitates app development. Ozone is serializable.

 Simplicity: A basic architecture is simpler to understand and debug. We've kept Ozone's

architecture basic despite its scalability. Ozone scales well. Over 100 billion items may be

stored in a single cluster.

 Layered Architecture: Ozone is a layered file system for current storage systems. It isolates

namespace management from block and node management, allowing scaling on both axes.

 Pain-free recovery: HDFS can recover from cluster-wide power outage without losing data

or requiring costly recovery methods. Losses in racks and nodes are negligible. Ozone will

withstand failures similarly.

 Apache's Open Source: Apache Open Source is crucial to Ozone's success. The Apache

Hadoop community designs and develops Ozone.

 Hadoop interoperability: Ozone should work with current Apache Hadoop applications like

Hive, Spark, and MapReduce. Therefore, Ozone:

- Hadoop FSA (aka OzoneFS). Hive, Spark, etc. may utilise Ozone without modification.

- Localization. Original HDFS/MapReduce allowed computation operations to be

scheduled on the same nodes as the data. Ozone supports application data localization.

- Deploy HDFS side-by-side. Ozone may share HDFS discs in an existing Hadoop cluster.

Ozone Concepts: Volumes, buckets, and Keys are the component parts that make up ozone.

Ozone is an extensible, fault-tolerant, and distributed object storage that is built on top of Hadoop.

In addition to being able to handle billions of items of varied sizes, Ozone is also capable of

performing well in containerized settings such as those provided by Kubernetes. When Ozone is

used, applications like as Apache Spark, Hive, and YARN function normally and do not need any

adjustments. It is quite simple to use Ozone due to the fact that it comes equipped with a Java client

library, support for the S3 protocol, and a command line interface.

- Volumes: Volumes are comparable to accounts in their function. Administrators are the

only people who can create new volumes or remove existing ones. The creation of a

volume for an organisation or team will normally be handled by an administrator.

- Buckets: A volume may have zero, one, or more buckets inside of it. Buckets in Ozone

function in a manner comparable to those in Amazon S3.

- Keys: are objects that are exclusive to a certain bucket and are analogous to S3 Objects

in their function. Any string may be used for a key name. The data that you store inside

these keys is denoted by values, and Ozone does not yet impose any kind of maximum

size restriction on key sizes.

Ozone is a redundant, distributed object store optimized for Big data workloads. The primary design

point of ozone is scalability, and it aims to scale to billions of objects. Ozone separates namespace

management and block space management; this helps ozone to scale much better. The namespace

is managed by a daemon called Ozone Manager (OM), and block space is managed by Storage

Container Manager (SCM). Ozone consists of volumes, buckets, and keys. A volume is similar to a

home directory in the ozone world. Only an administrator can create it. Volumes are used to store

buckets. Once a volume is created users can create as many buckets as needed. Ozone stores data as

keys which live inside these buckets. Ozone namespace is composed of many storage volumes.

Storage volumes are also used as the basis for storage accounting. The block diagram shows the core

components of Ozone.

The Ozone Manager is the name space manager, Storage Container Manager manages the physical

and data layer and Recon is the management interface for Ozone.

Advanced Concepts

Any distributed system can be viewed from different perspectives. One way to look at Ozone is to

imagine it as Ozone Manager as a name space service built on top of HDDS, a distributed block store.

Another way to visualize Ozone is to look at the functional layers; we have a metadata data

management layer, composed of Ozone Manager and Storage Container Manager. We have a data

storage layer, which is basically the data nodes and they are managed by SCM. The replication layer,

provided by Ratis is used to replicate metadata (OM and SCM) and also used for consistency when

data is modified at the data nodes. We have a management server called Recon, that talks to all

other components of Ozone and provides a unified management API and UX for Ozone.

We have a protocol bus that allows Ozone to be extended via other protocols. We currently only

have S3 protocol support built via Protocol bus. Protocol Bus provides a generic notion that you can

implement new file system or object store protocols that call into O3 Native protocol.

Get Full Contents from this link

Chapter-3 Apache Hive

Overview

 Apache Hive is a Hadoop-based data warehouse for searching and analysing massive Hadoop

datasets. Hadoop processes structured and semi-structured data.

 Initially, you had to construct sophisticated Map-Reduce tasks to use Hadoop as a Big Data

Processing engine, but now you can submit SQL queries. Hive targets SQL-savvy users.

 Hive uses HQL, a SQL-like language. HiveQL converts SQL-like queries to MapReduce jobs.

 Hive simplifies Hadoop. And you don’t need to learn java if you know ANSI SQL to work with

BigData.

 Your SQL query is transformed into a series of Map Reduce tasks by the Hive client, which

typically runs on your gateway/client node and sends them to a Hadoop cluster for execution.

 Hive arranges the Data into tables, which helps for providing an structure to HDFS data.

 Data analysis is performed using Hive, which is a Data Warehousing software that was created

on top of Hadoop. Additionally, Hive makes use of a language known as HiveQL (HQL), which

automatically converts queries that are similar to SQL into tasks for MapReduce.

Hive Features

 Before Apache Hive, there were several problems with Big Volume of data. Data size are keep

growing and making it tough to manage and the typical RDBMS failed to handle this volume.

 Most of the organizations attempted MapReduce to solve this issue. However, writing

MapReduce was another programming challenges, everybody has to learn Java and write

complex MapReduce jobs.

 Apache Hive helped a lot to overcome above problems.

 BigData Companies are now able to execute the following using Apache Hive:

o Schema flexibility and evolution

o Tables can be portioned and bucketed

o Apache Hive tables are defined directly in the HDFS

o JDBC/ODBC drivers are available

 For ad hoc needs, Apache Hive spares developers from designing difficult Hadoop MapReduce

processes. So, hive offers data summary, analysis, and querying.

 Hive is scalable and very quick. It may be extended greatly. Because Apache Hive and SQL are so

similar, learning and using Hive Queries is fairly simple for SQL developers.

https://www.hadoopexam.com/Cloudera_Certification/CCA159/What_is_cloudera_certifications_CCA131_CCA175_CCA159_CCPDE575_Exam.html

 By giving users a way to submit SQL queries via an interface, Hive lessens the complexity of

MapReduce. Therefore, with Apache Hive, business analysts may now experiment with big data

and provide insights.

 Additionally, it offers file access to a number of data storage, including HDFS and HBase. The fact

that we don't need to understand Java in order to use Apache Hive is its most significant feature.

Hive Architecture

Apache Hive has following major components:

1. Metastore:

a. It stores metadata for each of the tables like their schema and location.

b. Metastore stores the information about table partitions.

c. Driver connects to metastore to get the detail about various data sets distributed

over the cluster nodes.

d. Metastore is always a traditional RDBMS store like MySQL, Oracle RDBMS.

e. Hive metadata helps the driver to keep a track of the data and it is highly crucial.

2. Driver:

a. This is similar to JDBC driver which receives the HiveQL statements.

b. The driver starts the execution of the statement by creating sessions.

c. It monitors the life cycle and progress of the execution.

d. Driver stores the necessary metadata generated during the execution of a HiveQL

statement.

e. It also acts as a collection point of data or query result obtained after the Reduce

operation.

3. Compiler:

a. Every Hive SQL statement needs to be compiled before it performs the actual query

execution.

b. Compiler generates the query to an execution plan.

c. The execution plan contains the tasks.

d. And contains the steps needed to be performed by the MapReduce to get the

output as translated by the query.

e. The compiler in Hive converts the query to an Abstract Syntax Tree (AST).

f. First, check for compatibility and compile-time errors, then converts the AST to a

Directed Acyclic Graph (DAG).

4. Optimizer:

a. It performs various transformations on the execution plan to provide optimized

DAG.

b. It aggregates the transformations together, such as converting a pipeline of joins to

a single join, for better performance.

c. The optimizer can also split the tasks, such as applying a transformation on data

before a reduce operation, to provide better performance.

5. Executor:

a. Once compilation and optimization complete, the executor executes the tasks.

b. Executor takes care of pipelining the tasks.

6. CLI, UI, and Thrift Server:

a. CLI (command-line interface) provides a user interface for an external user to

interact with Hive.

b. Thrift server in Hive allows external clients to interact with Hive over a network,

similar to the JDBC or ODBC protocols.

Benefits of using Apache Hive

 Hive makes it considerably simpler to do data analysis, queries, and summarization on large

amounts of data.

 Since Hive supports external tables, it is feasible to process data without actually storing it in

HDFS. This is made possible by the fact that Hive supports external tables.

 Apache Hive is an excellent choice for fulfilling the low-level interface requirement of Hadoop.

 It also enables the division of data at the table level to boost efficiency, and this feature is

supported.

 Hive is equipped with a rule-based optimizer with the purpose of improving logical plan

performance.

 It is expandable, scalable, and has a user-friendly interface.

 Using HiveQL does not need any prior knowledge of programming languages; all that is required

is a fundamental understanding of SQL queries.

 Using Hive, we can simplify the process of processing structured data in Hadoop.

 Because it is so close to SQL, querying in Hive is a pretty straightforward process.

 Through the use of Hive, we can also conduct ad hoc queries for the data analysis.

Problems with Hive

 There is no provision for real-time queries or changes at the row level in Apache Hive.

 Additionally, Hive delivers a latency that is suitable for interactive data browsing.

 It is not beneficial for the processing of online transactions.

 In most cases, Apache Hive queries are characterised by a fairly long latency.

Facts about Apache Hive

 The Apache Hive is a Structural Framework on Hadoop.

 Using Hive, you can query massive datasets that are stored in remote storage might be helpful.

 Apache Hive is a kind of distributed data warehouse.

 HiveQL is a query language that is similar to SQL (HQL).

 HiveQL is a declarative programming language similar to SQL.

 The Hive table structure is analogous to the tables in a relational database.

 Using the Hive-QL query language, several users may concurrently query the data.

 Hive, on the other hand, enables the building of bespoke MapReduce framework processes that

may be used to do more in-depth data analysis.

 It is simple to extract, convert, and load (ETL) data using Apache Hive from HDFS.

 Hive provides the framework for a broad range of data types.

 Hive makes it possible to access files that are stored in HDFS.

 In addition to that, Apache Hive enables the conversion of a wide number of formats.

 However, Hive is not intended for use in the processing of online transactions (OLTP). Despite

this, we are able to put it to use for online analytical processing (OLAP).

 Apache Hive does not support updates or deletes, but it does support overwriting and acquiring

data.

 Hive does not support the use of subqueries, while writing this study material.

FAQ for Apache Hive

Question-1. What is Hive Metastore?

Answer: Hive metastore is a database that stores metadata about your Hive tables (eg. Table name,

column names and types, table location, storage handler being used, number of buckets in the table,

sorting columns if any, partition columns if any, etc.). When you create a table, this metastore gets

updated with the information related to the new table which gets queried when you issue queries

on that table.

Question-2: Wherever (Different Directory) I run hive query, it creates new metastore_db, please

explain the reason for it?

Answer: Whenever you run the hive in embedded mode, it creates the local metastore. And before

creating the metastore it looks whether metastore already exist or not. This property is defined in

configuration file hive-site.xml. Property is “javax.jdo.option.ConnectionURL” with default value

“jdbc:derby:;databaseName=metastore_db;create=true”. So to change the behavior change the

location to absolute path, so metastore will be used from that location.

Question-3: Is it possible to use same metastore by multiple users, in case of embedded hive?

Answer: No, it is not possible to use metastore in sharing mode. It is recommended to use

standalone “real” database like MySQL or PostGresSQL.

Question-4: Is multiline comment supported in Hive Script ?

Answer: No.

Question-5: If you run hive as a server, what are the available mechanism for connecting it from

application?

Answer: There are following ways by which you can connect with the Hive Server:

1. Thrift Client: Using thrift you can call hive commands from a various programming

a. languages e.g. C++, Java, PHP, Python and Ruby.

2. JDBC Driver : It supports the Type 4 (pure Java) JDBC Driver

3. ODBC Driver: It supports ODBC protocol.

Question-6: What is SerDe in Apache Hive?

Answer: A SerDe is a short name for a Serializer Deserializer. Hive uses SerDe (and FileFormat) to

read and write data from tables. An important concept behind Hive is that it DOES NOT own the

Hadoop File System (HDFS) format that data is stored in. Users are able to write files to HDFS with

whatever tools/mechanism takes their fancy("CREATE EXTERNAL TABLE" or "LOAD DATA INPATH,")

and use Hive to correctly "parse" that file format in a way that can be used by Hive. A SerDe is a

powerful (and customizable) mechanism that Hive uses to "parse" data stored in HDFS to be used by

Hive.

Question-7: Which classes are used by the Hive to Read and Write HDFS Files

Answer: Following classes are used by Hive to read and write HDFS files

 TextInputFormat/HiveIgnoreKeyTextOutputFormat: These 2 classes read/write data in

plain text file format.

 SequenceFileInputFormat/SequenceFileOutputFormat: These 2 classes read/write data

in hadoop SequenceFile format.

Question-8. Give examples of the SerDe classes which hive uses to Serialize and Desterilize data ?

Answer: Hive currently use these SerDe classes to serialize and deserialize data:

 MetadataTypedColumnsetSerDe: This SerDe is used to read/write delimited records like

CSV, tab-separated control-A separated records (quote is not supported yet.)

 ThriftSerDe: This SerDe is used to read/write thrift serialized objects. The class file for

the Thrift object must be loaded first.

 DynamicSerDe: This SerDe also read/write thrift serialized objects, but it understands

thrift DDL so the schema of the object can be provided at runtime. Also it supports a lot

of different protocols, including TBinaryProtocol, TJSONProtocol, TCTLSeparatedProtocol

(which writes data in delimited records).

Question-9. Can you use Apache Hive for OLTP systems?

Answer: No, it is not suitable for OLTP system because it does not offer insert and update at the row

level.

Question-10. Why does Apache Hive not store metadata information in HDFS and instead it needs

RDBMS?

Answer: Hive stores metadata information in the metastore which must be an RDBMS, so that it can

achieve low latency. Since, HDFS read/write operations are time-consuming processes.

Get Full Contents from this link

Chapter-4: Apache Hue

https://www.hadoopexam.com/Cloudera_Certification/CCA159/What_is_cloudera_certifications_CCA131_CCA175_CCA159_CCPDE575_Exam.html

Overview

Hue is an interactive query editor that runs in a web browser and gives users the ability to interact

with data warehouses. This is one of the most widely used Query Editor and HadoopExam will also

use this heavily in their training programs specially on HDFS, Sqoop, Hive and Impala. Through the

use of Hue, you can provide your SQL developers access to the power of business intelligence (BI)

and analytics. Hue is an analytics workbench that is open source and was developed for easy and

quick data discovery, as well as intelligent query support and seamless collaboration. Create a bridge

between information technology and the company in order to provide reliable self-service analytics.

For illustration purposes, the following image demonstrates a graphical representation of the results

of an Impala SQL query that may be generated with Hue:

Using Hue, you can do following activities

1. Hive & Impala: Explore your various databases.

2. Schema Tables: Proceed to the specific tables afterward.

3. Files: Navigate through the HDFS directories and the cloud storage.

4. Table Detail: Find the indexes and tables stored in HBase or Kudu.

5. Documents: Find documents

The primary section of the Hue UI has a comprehensive collection of tools, which include the

following:

- Editing environments: that are flexible and enable the creation of a broad range of scripts.

- Dashboards: that may be constructed "on the fly" by dragging and dropping objects into the

centre panel of the Hue user interface. There is no need for programming at all. After that,

you may study your statistics by using your individualised dashboard.

- Schedulers: The tool that allows you to construct schedulers by dragging and dropping,

similar to how dashboards are created. Using this feature, you will be able to construct

individualised processes and set them to execute on a predetermined schedule at certain

intervals. A monitoring interface will provide the current status of the tasks, as well as logs,

and will allow you to pause or cancel them.

Assistant Panel: The assistant panel you can find to the right of the main panel, and it offers tips and

guidance pertinent to the application that is now being used in the main panel. For instance, in the

picture that can be seen above, there is a middle panel that contains Impala SQL tips that may assist

in the construction of queries.

Hue Design and Architecture

In general, each Hue server is capable of supporting roughly 25 concurrent users, however this

number might vary based on the tasks being carried out by the users. It is not the number of users

that causes the majority of scaling problems; rather, it is the actions that users execute that are

resource expensive. For instance, downloading a significant amount of query results may have an

effect on the availability of resources for other users who are using the same instance of Hue at the

same time as the download process. During such period, the users could notice that performance is

slowing down. Another typical factor that might bring about observable shifts in performance are

sluggish RPC calls made between Hue and another service. When this occurs, the queries that are

sent may give the impression that they are "hanging" all of a sudden.

As a general rule, two Hue servers may support up to the following:

- 100 unique users per week

- At peak periods, there are 50 users per hour who can execute up to 100 queries.

- In a typical configuration, there are two Hue servers.

Administrator

- Install a load balancer on the path leading up to Hue.

- Make use of a database of production-quality. Hue Custom Databases may be seen here for

further details.

- Make sure that other services, such Impala, Hive, and Oozie, are in good health and are not

being negatively affected by the lack of resources. If any of these services become

unresponsive, it will have a negative impact on Hue's performance.

- It is a good idea to think about shifting workloads that are governed by service-level

agreements (SLAs) or are regarded as "noisy neighbours" to their own computing cluster.

Workloads that use the bulk of the available resources and result in performance concerns

are referred to as "noisy neighbours." Look into Virtual Private Clusters and Cloudera SDX if

you want to learn more about how to keep your computation and storage functions

separate.

- Set a maximum for the number of rows that will be returned in response to queries.

- Setting a value for the download row limit configuration variable of the Hue Beeswax

application is one approach to restrict the number of rows that are retrieved by the

application. This property may be set in the Hue Service Advanced Configuration Snippet

(Safety Valve), which is located in the Cloudera Manager configuration file for the hue safety

valve.ini property.

Major Functionalities of Hue in CDP

Hue is a web-based interface for using Apache Hadoop to do data analysis. It is possible to install it

on any computer running any version of Hadoop.

Hue is a collection of apps that allows users to have web-based access to CDH components and

functions as a platform for the development of bespoke applications.

The diagram that follows provides an illustration of how Hue works. The Hue Server web application

functions as a "container" that bridges the gap between your CDH installation and the browser. It

interfaces with a variety of servers that interface with CDH components and hosts the Hue apps.

Hue, which stands for Hadoop User Experience, is a graphical user interface that is open-source,

web-based, and designed for use with Apache Hadoop and Cloudera CDP. A flexible user interface is

created by Hue, which brings together a number of separate Hadoop ecosystem projects. Cloudera

CDP now includes additional customization options that are exclusive to the Hue. Hue functions as a

front-end for apps that operate on your cluster. This makes it possible for you to engage with

applications using an interface that is maybe more intuitive or well-known to you. It is no longer

necessary to log in to the cluster in order to execute scripts interactively using each application's

corresponding shell since Hue's apps, such as the Hive and Pig editors, eliminate this need. It's

possible that after a cluster is up and running, you'll communicate only with its apps using Hue or a

comparable interface.

Hue supported features:

- Amazon S3 and Hadoop File System (HDFS) Browser

- With the appropriate permissions, you can browse and move data between the ephemeral

HDFS storage and S3 buckets belonging to your account.

- Hive—Run interactive queries on your data. This is also a useful way to prototype

programmatic or batched querying.

- Pig—Run scripts on your data or issue interactive commands.

- Oozie—Create and monitor Oozie workflows.

- Metastore Manager—View and manipulate the contents of the Hive metastore

(import/create, drop, and so on).

- Job browser—See the status of your submitted Hadoop jobs.

- User management—Manage Hue user accounts and integrate LDAP users with Hue.

- To use the Hue Notebook for Spark, you must install Hue with Livy and Spark.

- Quickly identify relevant data: For analytics that are both quicker and more reliable, it is

possible to search and find relevant tables, views, and columns across all databases,

including cloud-native object stores, with ease. Ensure that data can be trusted instantly by

incorporating data stewardship into the system and allowing end users to tag data for

further classification and organising that is project-focused.

- Keep your changes safe and iterate across teams: Through seamless and safe collaboration

and sharing, silos of analytics and business intelligence may be eliminated. You can

safeguard even the most sensitive data by saving searches and result sets for later use,

sharing them with other users or departments, and explicitly setting access rights for those

saved items.

- Intelligent inquiry design and help: The only SQL editor with usage-enriched intelligence to

safeguard against malicious queries and make SQL users more productive. You may explore

and do analytics in an efficient and iterative manner by dragging and dropping tables and

columns, rapidly designing queries using autocomplete pop-ups, and receiving query

suggestions based on use and best practises.

- Native integration with the cloud: Browse through all databases, run queries on them, and

store the results in both on-premises and cloud-based systems. Apache Hive is used for data

preparation, Apache Solr is used for free-text analytics, and Apache Impala is used for high-

performance SQL analytics. Hue interfaces with the full of Cloudera's platform, including

storage engines, Apache Kudu and Amazon S3 object storage.

- Include data scientists and analysts in the analytics process: Cloudera's platform also

enables self-service data science with the Cloudera Data Science Workbench, which can be

carried out over the same shared data by users who are more familiar with the programming

languages R, Python, or Scala. In addition, the platform is compatible with all of the

industry's leading business intelligence (BI) and visualisation tools, such as Tableau, Qlik,

Zoomdata, and many others. This allows businesses to keep utilising the tools they already

rely on while taking advantage of the scalability and flexibility offered by Cloudera.

Hive vs Hue

Hive is a collection of keys and subkeys that are accompanied by a series of supporting files that

store backups of the data. To put it simply, the hive is the area where information about the

Windows registry is stored. Each hive has a tree, and each tree has a unique key. This key acts as the

tree's root, which is the point at which the tree begins or the highest point in the hierarchy inside

the register. There are registry keys, registry subkeys, and registry values included inside the registry.

The prefix "HKEY" is included at the beginning of every key that belongs to a hive. When all of the

other entries in the registry are minimised, a group of keys known as hives will show up on the left-

hand side of the screen in the form of folders. One is not possible to establish a Hive, remove one, or

rename it. During the early phases of development, Facebook was responsible for launching the

hive; however, the Apache Software Foundation eventually took over management of the project.

Both a web user interface that offers a variety of services and a Hadoop framework, Hue is referred

to simply as Hue. Hue has a web user interface for browsing HDFS files, in addition to providing the

file path. The Job browser, the Hadoop shell, User administrative rights, the Impala editor, the HDFS

file browser, the Pig editor, the Hive editor, the Ozzie web interface, and Hadoop API Access are the

most essential aspects of Hue. This online user interface style makes it easier for users to browse

among the files, in a manner similar to how a typical Windows user would navigate to his or her files

on their local PC. Users are able to avoid making syntax mistakes when conducting queries with the

help of Hue, which is a convenient tool since it gives a web user interface to programming languages.

Hue requires the use of a web browser in order to be installed or configured.

Get Full Contents from this link

Chapter-5: Cloudera CDP and YARN

Overview

 Apache YARN is the processing layer or execution engine for managing distributed

applications that run on multiple machines in a network.

 YARN is also known as MRv2.

 YARN supports MapReduce and legacy (MRv1) MapReduce jobs can run in YARN.

 YARN architecture splits the two primary responsibilities of the JobTracker into

o Resource management and

o Job scheduling/monitoring

 YARN will have two separate daemons for each of the above responsibility.

o A global ResourceManager for resources management and

o Per-application ApplicationMasters (Assume, each one of your Impala Query or Hive

Query or a MapReduce Job is a separate application and for each YARN will create

an Application Master).

 YARN enables the use of a variety of data processing engines for batch, interactive, and real-

time stream processing of data stored in HDFS or cloud storage such as S3 and ADLS.

 You may run various processing frameworks for distinct use-cases on the same Hadoop

cluster with the help of YARN, for example, Hive for SQL applications, Spark for in-memory

applications, and Storm for streaming applications.

 YARN is part of Cloudera Runtime.

CDP Compute

 Apache YARN is resource management tool for CDP or Hadoop framework.

https://www.hadoopexam.com/Cloudera_Certification/CCA159/What_is_cloudera_certifications_CCA131_CCA175_CCA159_CCPDE575_Exam.html

 Apache YARN manages resources for the applications running on your cluster by allocating

resources through scheduling, limiting CPU usage, and partitioning clusters.

 You can use Access Control Lists to use YARN with a secure cluster.

 By using Apache YARN, you can optimize the use of vcores and memory.

YARN architecture and workflow

- YARN has three main components:

o ResourceManager: Allocates cluster resources using a Scheduler and

ApplicationManager.

o ApplicationMaster: Manages the life-cycle of a job by directing the NodeManager to

create or destroy a container for a job. There is only one ApplicationMaster for a job.

o NodeManager: Manages jobs or workflow in a specific node by creating and

destroying containers in a cluster node.

YARN Features

- YARN enables you to manage resources and schedule jobs in Hadoop and has the following

features.

- Multi-tenancy:

o You can use multiple open-source and proprietary data access engines for batch,

interactive, and real-time access to the same dataset. Multi-tenant data processing

improves an enterprise’s return on its Hadoop investments.

o YARN's dynamic resource management allows many engines and workloads to use

the same cluster resources. Make your data available to users throughout your

whole business environment via batch, interactive, sophisticated, or real-time

processing, all inside the same platform, to get the most out of your Hadoop

platform.

- Cluster utilization:

o You can dynamically allocate cluster resources to improve resource utilization.

o Fine-grained settings improve cluster utilisation, allowing you to implement

workload SLAs for priority workloads and group-based rules throughout the

enterprise. Process more data in more ways while keeping your most vital tasks

running smoothly.

- Multiple resource types: You can use multiple resource types such as memory, CPU, and

GPU.

- Scalability:

o Significantly improved data center processing power. YARN’s ResourceManager

focuses exclusively on scheduling and keeps pace as clusters expand to thousands of

nodes managing petabytes of data.

o YARN is intended to manage scheduling for Hadoop's vast scale, allowing you to add

new and bigger workloads while staying on the same platform.

- Compatibility: MapReduce applications developed for Hadoop 1 runs on YARN without any

disruption to existing processes. YARN maintains API compatibility with the previous stable

release of Hadoop.

YARN and Cluster Basics (Master and Worker Nodes)

- A host, which is also called a node, in YARN terminology. A cluster is two or more hosts

connected by a high-speed local network.

- In Hadoop, there are two types of hosts in the cluster.

- A master host serves as the point of communication for a client programme. The other

computers in the cluster, known as worker hosts, get their assignments from the cluster's

master host.

- In a YARN cluster, there are two types of hosts:

o The ResourceManager is the master daemon that communicates with the client,

tracks resources on the cluster, and orchestrates work by assigning tasks to

NodeManagers.

o A NodeManager is a worker daemon that launches and tracks processes spawned

on worker hosts.

YARN Configuration File

- The YARN configuration file is an XML file that contains properties.

- This file is placed in a well-known location on each host in the cluster and is used to

configure the ResourceManager and NodeManager.

- By default, this file is named yarn-site.xml.

YARN Requires a Global View

- YARN currently defines two resources

o vcores

o and memory.

- Each NodeManager tracks its own local resources and communicates its resource

configuration to the ResourceManager, which keeps a running total of the cluster’s available

resources.

- By keeping track of the total, the ResourceManager knows how to allocate resources as they

are requested.

- Vcore has a special meaning in YARN. You can think of it simply as a “usage share of a CPU

core.”

- If you expect your tasks to be less CPU-intensive (sometimes called I/O-intensive), you can

set the ratio of vcores to physical cores higher than 1 to maximize your use of hardware

resources.)

YARN Containers

- Containers are an important YARN concept.

- You can think of a container as a request to hold resources on the YARN cluster.

- Currently, a container hold request consists of vcore and memory, as shown in below

- Container as a hold (left), and container as a running process (right).

- Once a hold has been granted on a host, the NodeManager launches a process called a task.

- The right side of Figure shows the task running as a process inside a container.

YARN Application Processing on Cluster

- An application is a YARN client program that is made up of one or more tasks.

- For each running application, a special piece of code called an ApplicationMaster helps

coordinate tasks on the YARN cluster.

- The ApplicationMaster is the first process run after the application starts.

- An application running tasks on a YARN cluster consists of the following steps:

- Step-1: The application starts and talks to the ResourceManager for the cluster, Application

starting up before tasks are assigned to the cluster

Step-2: The ResourceManager makes a single container request on behalf of the application and

allocated container on a cluster.

Step-3: The ApplicationMaster starts running within that container, Application + ApplicationMaster

running in the container on the cluster.

Step-4: The ApplicationMaster requests subsequent containers from the ResourceManager that are

allocated to run tasks for the application. Those tasks do most of the status communication with the

ApplicationMaster allocated in Step 3), as shown below Application + ApplicationMaster + task

running in multiple containers running on the cluster.

Step-5: Once all tasks are finished, the ApplicationMaster exits. The last container is de-allocated

from the cluster.

Step-6: The application client exits. (The ApplicationMaster launched in a container is more

specifically called a managed AM. Unmanaged ApplicationMasters run outside of YARN’s control.

Llama is an example of an unmanaged AM.)

MapReduce Fundamental Concepts

- In the MapReduce paradigm, an application consists of Map tasks and Reduce tasks. Map

tasks and Reduce tasks align very cleanly with YARN tasks.

- Below image, illustrates how the map tasks and the reduce tasks map cleanly to the YARN

concept of tasks running in a cluster.

- In a MapReduce application, there are multiple map tasks, each running in a container on a

worker host somewhere in the cluster. Similarly, there are multiple reduce tasks, also each

running in a container on a worker host.

- Simultaneously on the YARN side, the ResourceManager, NodeManager, and

ApplicationMaster work together to manage the cluster’s resources and ensure that the

tasks, as well as the corresponding application, finish cleanly.

YARN Integrated across the CDP platform

 A CDP cluster is made up of two or more hosts connected by an internal high-speed

network.

 Master hosts are a small number of hosts reserved to control the rest of the cluster.

Worker hosts are the non-master hosts in the cluster.

 In a cluster with YARN running, the master process is called the ResourceManager and

the worker processes are called NodeManagers.

 The configuration file for YARN is named yarn-site.xml. There is a copy on each host in

the cluster. It is required by the ResourceManager and NodeManager to run properly.

YARN keeps track of two resources on the cluster, vcores and memory. The

NodeManager on each host keeps track of the local host’s resources, and the

ResourceManager keeps track of the cluster’s total.

 A container in YARN holds resources on the cluster. YARN determines where there is

room on a host in the cluster for the size of the hold for the container. Once the

container is allocated, those resources are usable by the container.

 An application in YARN comprises three parts:

 The application client, which is how a program is run on the cluster.

 An ApplicationMaster which provides YARN with the ability to perform allocation on

behalf of the application.

 One or more tasks that do the actual work (runs in a process) in the container allocated

by YARN.

 A MapReduce application consists of map tasks and reduces tasks.

 A MapReduce application running in a YARN cluster looks very much like the MapReduce

application paradigm, but with the addition of an ApplicationMaster as a YARN

requirement.

 Cloudera's platform is built on core Hadoop, which includes HDFS, MapReduce, and

YARN.

 All platform components have access to the same HDFS data and take part in shared

resource management through YARN.

 Hadoop, as part of Cloudera's platform, also benefits from straightforward deployment

and administration (through Cloudera Manager) as well as shared compliance-ready

security and governance.

YARN Scheduler

- A scheduler determines which jobs run, where and when they run, and the resources

allocated to the jobs.

- The YARN (MRv2) and MapReduce (MRv1) computation frameworks support the following

schedulers:

o FIFO - Allocates resources based on arrival time.

o Fair - Allocates resources to weighted pools, with fair sharing within each pool.

When configuring the scheduling policy of a pool, Domain Resource Fairness (DRF) is

a type of fair scheduler.

o Capacity - Allocates resources to pools, with FIFO scheduling within each pool.

- However, Cloudera CDP only supports the Capacity Scheduler.

YARN Capacity Scheduler Overview

- The CapacityScheduler is designed to run Hadoop applications as a shared, multi-tenant

cluster in an operator-friendly manner while maximizing the throughput and the utilization

of the cluster.

- Traditionally each organization has it own private set of compute resources that have

sufficient capacity to meet the organization’s SLA under peak or near-peak conditions.

- This generally leads to poor average utilization and overhead of managing multiple

independent clusters, one per each organization.

- Sharing clusters between organizations is a cost-effective manner of running large Hadoop

installations since this allows them to reap benefits of economies of scale without creating

private clusters. However, organizations are concerned about sharing a cluster because they

are worried about others using the resources that are critical for their SLAs.

- The CapacityScheduler is designed to allow sharing a large cluster while giving each

organization capacity guarantees.

- The central idea is that the available resources in the Hadoop cluster are shared among

multiple organizations who collectively fund the cluster based on their computing needs.

- There is an added benefit that an organization can access any excess capacity not being used

by others. This provides elasticity for the organizations in a cost-effective manner.

- Sharing clusters across organizations necessitates strong support for multi-tenancy since

each organization must be guaranteed capacity and safe-guards to ensure the shared cluster

is impervious to single rogue application or user or sets thereof.

- The CapacityScheduler provides a stringent set of limits to ensure that a single application or

user or queue cannot consume disproportionate number of resources in the cluster. Also,

the CapacityScheduler provides limits on initialized and pending applications from a single

user and queue to ensure fairness and stability of the cluster.

- The primary abstraction provided by the CapacityScheduler is the concept of queues. These

queues are typically setup by administrators to reflect the economics of the shared cluster.

- To provide further control and predictability on sharing of resources, the CapacityScheduler

supports hierarchical queues to ensure resources are shared among the sub-queues of an

organization before other queues are allowed to use free resources, thereby providing

affinity for sharing free resources among applications of a given organization.

YARN Web User Interface

- You can use YARN Web interface to monitor clusters, queues, applications, services, and

flow activities.

- Cluster Overview:

o When you open a Cluster Overview page, it should look like as below.

- And provides the below information

- Cluster Resource Usage by Applications:

o Displays the percentage of cluster resources in use by applications and the

percentage available for usage.

- Cluster Resource Usage by Leaf Queues:

o Displays the percentage of cluster resources in use by leaf queues and the

percentage available for usage.

- Finished Apps From All Users:

o Displays the number of completed, killed, and failed applications.

- Monitor Running Apps:

o Displays the number of pending and running applications.

- memory-mb – Usages:

o Displays the amount of used and available memory.

- vcores – Usages:

o Displays the number of used and available virtual cores.

- Monitor Node Managers:

o Displays the status of the Node Managers under the following categories:

 Active

 Unhealthy

 Decommissioning

 Decommissioned

Resource Scheduling and Management

 You can manage resources for the applications running on your cluster by allocating

resources through scheduling, limiting CPU usage by configuring cgroups, and

partitioning the cluster into subclusters using node labels, and launching applications on

Docker containers.

 The CapacityScheduler is responsible for scheduling. The CapacityScheduler is used to

run Hadoop applications as a shared, multi-tenant cluster in an operator-friendly

manner while maximizing the throughput and the utilization of the cluster.

 The ResourceCalculator is part of the YARN CapacityScheduler. If you have only one type

of resource, typically a CPU virtual core (vcore), use the DefaultResourceCalculator. If

you have multiple resource types, use the DominantResourceCalculator.

 YARN resource allocation of multiple resource-types: You can manage your cluster

capacity using the Capacity Scheduler in YARN. You can use the Capacity Scheduler's

DefaultResourceCalculator or the DominantResourceCalculator to allocate available

resources.

 Hierarchical queue characteristics: You must consider the various characteristics of the

Capacity Scheduler hierarchical queues before setting them up.

 Scheduling among queues: Hierarchical queues ensure that guaranteed resources are

first shared among the sub-queues of an organization before any remaining free

resources are shared with queues belonging to other organizations. This enables each

organization to have control over the utilization of its guaranteed resources.

 Application reservations: For a resource-intensive application, the Capacity Scheduler

creates a reservation on a cluster node if the node's free capacity can meet the

particular application's requirements. This ensures that the resources are utilized only by

that particular application until the application reservation is fulfilled.

 Resource distribution workflow: During scheduling, queues at any level in the hierarchy

are sorted in the order of their current used capacity, and the available resources are

distributed among them starting with queues that are currently the most under-served.

 Use CPU scheduling: Cgroups with CPU scheduling helps you effectively manage mixed

workloads.

 Use GPU scheduling: On your cluster, you can configure GPU scheduling and isolation.

Currently only Nvidia GPUs are supported in YARN. You can use Cloudera Manager to

configure GPU scheduling on your cluster.

 Use FPGA scheduling: You can use FPGA as a resource type.

 Limit CPU usage with Cgroups: You can use cgroups to limit CPU usage in a Hadoop

Cluster.

 Partition a cluster using node labels: You can use Node labels to partition a cluster into

sub-clusters so that jobs run on nodes with specific characteristics.

Chpater-6: Apache Spark

Overview

Apache Spark is a broad framework for distributed computing that delivers excellent performance

for both batch and interactive processing. It comprises of the Spark core as well as numerous

projects that are connected to it and offers application programming interfaces (APIs) for Java,

Python, and Scala.

You have the option of using an interactive shell or submitting an application to execute Spark

applications locally or distributed over a cluster. Both of these options are available to you. During

the data exploration phase as well as for ad hoc analyses, it is usual practise to run Spark

applications in an interactive mode.

Spark needs a cluster manager in order to successfully execute applications that are deployed over a

cluster. The YARN cluster manager is the only one that Cloudera supports. The YARN

ResourceManager and NodeManager roles are responsible for managing Spark application processes

while they are being executed on YARN.

Apache Spark is a unified computing engine and a suite of libraries for parallel data processing on

computer clusters. Spark has become the tool of choice for any software developer or data scientist

that is interested in big data. Spark is capable of running on anything from a laptop to a cluster of

thousands of servers, and it offers support for a number of widely used programming languages,

including Python, Java, Scala, and R. It also includes libraries that can be used for a variety of tasks,

including SQL, streaming, and machine learning. Because of this, it is a simple system to begin with

and can easily be expanded to handle massive amounts of data or an extremely vast scale.

An easy-to-understand example of all that Spark has to offer an end user is shown here.

Python, Java, Scala, R, and SQL can utilise Spark. Spark is built in Scala and runs on the Java Virtual

Machine (JVM). To run Spark on a laptop or cluster, you require Java 6 or newer. You'll need a

Python interpreter to access the API (version 2.6 or newer). You'll need R if you want to utilise it.

Fundamentals of Apache Spark

Unified:

Spark aims to provide a single platform for creating large data applications. Unified means... Spark

supports a broad variety of data analytics operations, from basic data loading and SQL queries to

machine learning and streaming computation, using the same computational engine and APIs. Real-

world data analytics jobs, whether interactive analytics in a Jupyter notebook or conventional

software development, integrate several processing kinds and libraries. Spark's cohesive nature

makes writing simpler and faster. Spark offers consistent, composable APIs that may be used to

create an application from smaller components or existing libraries, and makes it simple to develop

your own analytics libraries on top.

Composable APIs aren't enough. Spark's APIs are meant to optimise user programmes' libraries and

functions for maximum performance. If you load data using SQL and subsequently analyse a machine

learning model using Spark's ML library, the engine may merge both stages into one scan. Spark is a

great platform for interactive and production applications because to its broad APIs and high-

performance execution.

Spark's emphasis on a single platform mirrors previous software unified platform.

Data scientists use uniform libraries (e.g., Python or R) when modelling, while web developers use

united frameworks like Node.js or Django. Before Spark, no open-source system provided a single

engine for parallel data processing, therefore users had to piece together an application from

disparate APIs and platforms. Spark rapidly became the industry standard.

Spark's built-in APIs have grown to support new workloads. Developers have also refined the

project's unifying engine. This book will concentrate on Spark 2.0's "structured APIs" (DataFrames,

Datasets, and SQL) to optimise user applications.

Computing Engine:

Spark is a computational engine that aims towards unification. Spark merely loads data from storage

systems and performs computations, not permanent storage. Spark may be utilised with Azure

Storage, Amazon S3, Apache Hadoop, Apache Cassandra, and Apache Kafka. Spark neither saves nor

prioritises long-term data. Most data is already stored in several systems. Spark performs

calculations on data wherever it exists since moving it is costly. Spark tries to make user-facing APIs

seem comparable so apps don't have to worry about where their data resides. Spark focuses on

computing, unlike Apache Hadoop.

Hadoop's storage technology (the Hadoop file system) and computation system (MapReduce) were

tightly interwoven. This option makes it difficult to operate one system without the other or create

apps that access data elsewhere. Spark operates well on Hadoop storage, but it's also utilised in

contexts where Hadoop design doesn't make sense, such as the public cloud (where storage may be

rented separately from compute) or streaming applications.

Libraries:

Spark's libraries leverage on its unified engine architecture to offer a single API for data analysis

operations. Spark supports both engine-bundled libraries and third-party open source libraries.

Today, Spark's standard libraries form the majority of the open source project; the Spark core engine

has evolved little since its inception, but the libraries have developed to give greater capability.

Spark comprises SQL and structured data (Spark SQL), machine learning (MLlib), stream processing

(Spark Streaming and Structured Streaming), and graph analytics (GraphX). There are hundreds of

free source external libraries, from storage interfaces to machine learning techniques. spark-

packages.org lists external libraries.

Spark Architecture

When you think of a "computer," you probably picture a desktop device. This computer is great for

movies and spreadsheets. As many users know, your computer can't do everything. Data processing

is difficult. Single machines can't process large volumes of data (or the user may not have time to

wait for the computation to finish).

A cluster combines the resources of multiple computers to utilise them as one. A set of machines

isn't powerful without a framework to coordinate work. Spark manages and coordinates data tasks

across a cluster of computers.

Spark's cluster of computers will be controlled by Spark's Standalone cluster manager, YARN, or

Mesos. The cluster administrators then provide Spark applications resources so we may finish our

job.

Spark Applications

The components that make up a Spark Application are referred to as the "driver process" and the

"executor processes." The driver process is responsible for three things: keeping information about

the Spark Application; reacting to a user's programme or input; and analysing, distributing, and

scheduling work among the executors. It resides on a node in the cluster and performs your main()

function (defined momentarily). The driver process is critically necessary since it is the core of a

Spark Application and it is responsible for keeping all of the important information updated during

the application's lifetime.

The executors are the ones who are accountable for carrying out the task that has been delegated to

them by the driver. This indicates that each executor is solely responsible for two things: running the

code that has been given to it by the driver, and reporting back to the driver node the current status

of the computation that is taking place on that executor.

The cluster manager is responsible for managing the underlying hardware and allocating resources

to Spark applications. This might be Spark's standalone cluster manager, YARN, or Mesos.

Alternatively, it could be one of numerous other fundamental cluster managers. This indicates that a

cluster is capable of simultaneously hosting many instances of a Spark application running at the

same time. In the next section of this book, titled "Part IV: Production Applications," we will have a

more in-depth discussion on cluster managers.

From the preceding example, we can see that our driver is located on the left, while the four

executors are located on the right. In this particular design, the idea of cluster nodes has been

eliminated. Through the use of settings, the user has the ability to determine how many executors

should land on each node.

Spark may operate in both a cluster and a local mode. The cluster mode is the default. Because both

the driver and the executors are just processes, it is possible for them to coexist on the same system

or on entirely distinct computers. When operating in the local mode, both of them execute (as

threads) on your own machine rather than in a cluster. We prepared this book keeping in mind local

mode, which means that everything should be able to be executed on a single system.

Spark may operate in both a cluster and a local mode. The cluster mode is the default. Because both

the driver and the executors are just processes, it is possible for them to coexist on the same system

or on entirely distinct computers. When operating in the local mode, both of them execute (as

threads) on your own machine rather than in a cluster. We prepared this book keeping in mind local

mode, which means that everything should be able to be executed on a single system.

Each language's application programming interface (API) will adhere closely to the key notions that

we outlined before. Spark code will be executed via the user's SparkSession, which is made

accessible to the user. The SparkSession will serve as the entry point. When using Spark from within

Python or R, the user never writes explicit instructions for the JVM; rather, the user writes code in

Python and R that Spark will translate into code that Spark can then run on the executor JVMs. This

is the case even when the user is using Spark from within Python or R.

DataFrames

A DataFrame, which is the most popular kind of Structured API, is essentially a representation of a

data table that has rows and columns. The schema consists of the list of columns as well as the types

included inside those columns. A straightforward comparison would be a spreadsheet that has

labelled columns. A spreadsheet is stored on a single computer at a single place, but a Spark

DataFrame may be distributed over thousands of machines. This is the primary distinction between

the two. It should be obvious why the data are being stored on several computers: either the data

are too massive to fit on a single system or the calculation would simply take too long to complete

on a single machine.

The idea of a DataFrame is not one that is exclusive to Spark. R and Python have a number of

conceptual similarities. On the other hand, Python/R DataFrames, with a few notable exceptions, are

stored on a single system as opposed to numerous workstations. This restricts what you are able to

do in Python and R with a particular DataFrame to the resources that are available on that particular

system. On the other hand, due to the fact that Spark includes language interfaces for both Python

and R, converting Pandas (Python) DataFrames to Spark DataFrames and R DataFrames to Spark

DataFrames is a rather simple process (in R).

In addition to Datasets and Dataframes, Spark now supports SQL Tables and Resilient Distributed

Datasets as fundamental abstractions (RDDs). Despite the fact that each of these abstractions

represents a distinct dispersed collection of data, they nonetheless have unique interfaces for

interacting with that data. DataFrames are the most user-friendly and productive option; moreover,

they are accessible in every language.

Partitions

Spark divides the data into sections that it calls partitions in order to make it possible for all of the

executors to carry out their tasks simultaneously. A A partition in our cluster is a set of rows that are

hosted on one of our physical machines. The divisions of a DataFrame each represent a different

way.

In the course of the execution, the data will be physically dispersed among all of your cluster's

devices. Spark will work if you just have one partition. even if you have thousands of executors, you

will only have a parallelism of one for the whole process. In the event that you have a single partition

while having numerous Because there is just one computing resource, executor Spark will still only

have a parallelism of one.

When working with DataFrames, one crucial point to keep in mind is that, for the most part, we do

not actively change the divisions of the data. (with regard to each person) In the physical partitions,

we only provide the high-level changes of the data, and Spark takes care of the rest. Decides how

the task will be carried out in its entirety throughout the cluster. Lower level application

programming interfaces are available (through the Resilient Distributed Object interface for

datasets), and we go through them in Part III of this book.

Transformations

The fundamental data structures in Spark are immutable, which means that they cannot be altered

once they have been generated. If you are unable to modify it in any way, what are you going to do

with it then? This is something that may seem unusual at first. In order to "alter" a DataFrame, you

will need to inform Spark on the manner in which you would want to transform the DataFrame that

you now have into the DataFrame that you desire.

The name for these kinds of instructions is "transformations." Let's carry out a straightforward

transformation to discover all even integers included inside the present DataFrame.

Wide Dependency:

A transformation that follows the broad dependence (or wide transformation) style will have

numerous input partitions leading to the production of many output partitions. This process, in

which Spark will trade partitions throughout the cluster, is often known to as a shuffle, and you will

frequently hear it referred to as such. When narrow transformations are used, Spark will

automatically carry out an action known as pipelining on narrow dependencies. This implies that if

we define many filters on DataFrames, they will all be carried out in-memory if we use narrow

transformations. One cannot make the same statement about shuffles. When we carry out a shuffle,

Spark will save the outcomes of the operation on disc. Because shuffle optimization is such an

important issue, you'll likely come across many discussions about it on the internet, but for the time

being, all you really need to know is that there are two different types of transformations.

Narrow Dependency: Narrow transformations, also known as transformations with narrow

dependencies, are ones in which each input partition will only contribute to a single output partition.

We'll refer to these transformations as narrow. Our where statement in the previous piece of code

establishes a restricted dependence, meaning that just one partition contributes to the maximum of

one output partition.

Lazy Evaluation

A graph of processing instructions will not be carried out by Spark until the very last possible second

because it uses a technique known as "lazy evaluation." When we do an operation in Spark, rather

than instantly affecting the data, we develop a plan of transformations that we would want to apply

to our source data. This plan is then executed on our source data. Spark, by delaying the execution

of the code until the very last possible moment, will convert this plan from your raw DataFrame

transforms into a physically efficient plan that will run as efficiently as possible throughout the

cluster. Because of this, the end user may reap enormous advantages as a result of Spark's ability to

optimise the whole data flow from beginning to finish. On DataFrames, there is a feature known as

"predicate pushdown" that serves as an illustration of this concept. If we design a huge Spark job but

provide a filter at the end that only needs us to get one row from our source data, the most effective

approach to carry this out is to access the single record that we needed. This is because the filter

only requires us to fetch one row. Spark will actually assist us in optimising this situation by lowering

the filter on its own own.

Actions

We are able to construct a more rational transformation plan as a result of transformations. We

need to do some action in order to start the calculation. Spark is given the instruction to calculate a

result based on a sequence of transformations through an action. The count action is the simplest

one, and it provides us with the total number of records included in the DataFrame.

divisBy2.count()

Now we can see the outcome! It should come as no surprise that there are 500 numbers between 0

and 999 that are divisible by two. Now, counting isn't the only thing you can do. The following are

the three categories of actions:

actions to collect data to native objects in the appropriate language; actions to see data in the

console; actions to write to output data sources; and actions to view data in the console.

When we were specifying our action, we started a Spark job that runs our filter transformation,

which is a narrow transformation. This is followed by an aggregation, which is a wide transformation,

that performs the counts on a per-partition basis. Finally, a collect with brings our result to a native

object in the appropriate language. All of this is viewable by checking the Spark UI, which is a tool

that is included with Spark and gives us the ability to monitor the Spark tasks that are currently

executing on a cluster.

DataFrames in addition to SQL

In the last example, we went through the steps of a straightforward example; now, let's go through

the steps of a more complicated example while following along in both DataFrames and SQL. Spark

the same modifications in precisely the same manner regardless of the language that is being used.

Before Spark actually executes your code, you have the option of expressing your business logic in

SQL or DataFrames (written in either R, Python, Scala, or Java), and Spark will compile that logic

down to an underlying plan (which can be seen in the explain plan). You, as a user of Spark SQL, have

the ability to register any DataFrame as a table or view (a temporary table), and then query that

DataFrame with standard SQL. There is no difference in performance between writing SQL queries

and writing DataFrame code since they both "compile" to the same underlying plan that we define in

DataFrame code. This is the case because DataFrame code is compiled.

With one easy method call, a DataFrame may be transformed into a table or view of your choosing.

Chapter-7: Apache Impala

Overview

On data that is stored in common Apache Hadoop file formats, the SQL queries that are provided by

the Apache Impala project provide great speed and low latency. Instead of the lengthy batch

processes that are typically associated with SQL-on-Hadoop technologies, which are made possible

by the slow response times for queries, interactive exploration and fine-tuning of analytic queries

are now possible. (You will often come across the word "interactive" being used to different sorts of

quick queries with response times on a human-scale.)

Both Apache Hive and Impala are able to exchange their databases and tables because to Impala's

integration with the Apache Hive metastore database. Because of Impala and Hive's high degree of

interaction with one another and their compliance with the HiveQL syntax, you can use either

Impala or Hive to build tables, run queries, load data, and do other similar tasks.

The following is a list of some of the primary benefits offered by the Impala:

- Because Impala is integrated with the preexisting CDH ecosystem, it is possible to store,

distribute, and retrieve data by using the many solutions that are included with CDH. This

prevents the creation of data silos and lowers the need for costly data transfer.

- Impala allows users to have access to data that is stored in CDH without having them to have

the Java expertise that is necessary for MapReduce tasks. The HDFS file system is

immediately accessible to Impala, allowing for direct data retrieval. In addition to this,

Impala has a SQL front-end that may be used to retrieve data stored in the HBase database

system or in the Amazon Simple Storage System (S3).

- Impala queries often provide results within seconds or a few minutes, but Hive queries can

take several minutes or even hours to finish. Impala queries also deliver results much more

quickly.

- Parquet is a columnar storage architecture that is suited for large-scale queries, which are

prevalent in data warehouse applications. Impala is a pioneer in the usage of the Parquet file

format, which was developed by Facebook.

Impala enables you to do SQL queries directly on your Apache Hadoop data while it is stored in

HDFS, HBase, or the Amazon Simple Storage Service. These searches are both quick and interactive

(S3). Impala utilises the same metadata, SQL syntax (referred to as Hive SQL), ODBC driver, and user

interface (referred to as the Impala query UI in Hue) as Apache Hive. This is in addition to using the

identical unified storage platform.

This offers a platform that is both well-known and unified, and it can be used for real-time or batch-

oriented queries.

Impala is a new tool that was recently added to the arsenal of options for querying large amounts of

data. Batch processing frameworks like Hive that are based on MapReduce are not rendered

obsolete by Impala's introduction. Batch operations that run over an extended period of time, such

as those requiring the batch processing of Extract, Transform, and Load (ETL) type processes, are the

optimum use case for Hive and other frameworks that are based on MapReduce.

Benefits of using Impala

Impala gives you the following benefits: • A SQL interface that data scientists and analysts are

already familiar with.

• The ability to query large amounts of data in Apache Hadoop (also known as "big data").

• Queries that are executed in a decentralised manner inside a cluster setting, which enables

simple scalability and the use of commodity hardware that is more cost-effective.

• The capability to exchange data files across multiple components without the need for any

steps including copying or exporting and importing the data; for instance, to write with Pig,

convert with Hive, and query with Impala. Because Impala can read from and write to Hive

tables, it is possible to do analytics on Hive-produced data while using Impala for basic data

exchange.

• A unified platform for the processing and analysis of large amounts of data, allowing clients

to save unnecessary expenditures on modelling and ETL.

How Impala Works with Hadoop

The following are the components that make up the Impala solution:

• Clients - Impala's ability to interface with external entities is enabled through clients such as

Hue, ODBC clients, JDBC clients, and the Impala Shell.

• Typically, queries and administrative actions like connecting to Impala are carried out with

the assistance of these interfaces.

• The Hive Metastore is where information about the data that Impala has access to is stored.

For instance, the metastore provides Impala with information on the databases that are

accessible as well as the layout of those databases. The relevant metadata changes are

automatically broadcast to all Impala nodes by the dedicated catalogue service that was

introduced in Impala 1.2. This occurs whenever you make changes to schema objects, such

as creating, dropping, or altering them; loading data into tables; and so on through Impala

SQL statements.

• The Impala process is responsible for query coordination and execution. It is a process that

runs on DataNodes. Impala clients' queries may be received, planned, and coordinated by

each instance of Impala running. The queries are subsequently divided over the several

Impala nodes, which then take on the role of workers to carry out the simultaneous query

fragments.

• HBase and HDFS are used for storing data that may be searched later.

Impala and Query Execution

The following procedures are used to handle queries that are run using Impala:

1. User applications use ODBC or JDBC, which both offer standardised querying interfaces, to

deliver SQL queries to Impala. Any impalad in the cluster is available for the user application

to connect to. This impalad will serve as the query's coordinator going forward.

2. After the query has been parsed and analysed by Impala, it is determined what actions need

to be carried out by various impalad instances located across the cluster. Planning goes into

the execution to ensure maximum effectiveness.

3. In order to retrieve data, local instances of impalad connect to several services, such as HDFS

and HBase.

4. The results of each impalad are sent to the client via the coordinating impalad, which

receives the data from each impalad.

Impala and Hive

Impala takes use of a variety of Hadoop ecosystem components that are already well-known to

users. Since Impala is capable of exchanging data with other Hadoop components in both a

consumer and producer capacity, it is able to integrate itself into your ETL and ELT pipelines in a

variety of different ways.

An important objective of the Impala project is to improve the speed and effectiveness of SQL-on-

Hadoop operations to the point where they become appealing to new sorts of users and open up

Hadoop to new kinds of use cases. It takes use of preexisting Apache Hive infrastructure whenever it

is feasible to do so in order to carry out long-running, batch-oriented SQL queries; this infrastructure

is already in place for many Hadoop users.

Impala, in particular, stores the definitions of its tables in a regular MySQL or PostgreSQL database

that is referred to as the metastore. This is the same database that Hive uses to store information of

this kind. Therefore, Impala is able to access tables that have been created or loaded by Hive, so long

as all columns utilise data types, file formats, and compression codecs that are supported by Impala.

As a result of the original emphasis placed on the features and efficiency of queries, Impala is able to

read a wider variety of data types using the SELECT statement than it is able to create using the

INSERT statement. Hive must be used to load the data before it can be queried via file formats such

as Avro, RCFile, or SequenceFile.

The Impala query optimizer has the ability to use table statistics in addition to column statistics.

Initially, you acquired this information by using the ANALYZE TABLE command in Hive; however,

beginning with version 1.2.2 of Impala and above, you should use the COMPUTE STATS statement

instead. The COMPUTE STATS tool needs less setup, is more stable, and does not require the user to

move between the Impala shell and the Hive shell at any point throughout the process.

A Brief Introduction to Impala Metadata and the Metastore

In the section titled "How Impala Works with Hive," located on page 19, it is said that Impala stores

information on table definitions in a central database called as the "metastore." Additionally, Impala

monitors the following additional information for the low-level properties of data files:

• The actual locations, inside HDFS, of each block in the file system.

When a table has a significant amount of data and/or a big number of partitions, obtaining all of the

table's information may be a time-consuming process that, in certain instances, might take several

minutes. Therefore, all of this information is stored in the cache of each Impala node so that it may

be reused for subsequent searches against the same database.

Before a query can be issued against a table, all of the other Impala daemons in the cluster need to

receive the most recent metadata, which will replace any out-of-date cached metadata. This is

necessary in the event that either the table definition or the data contained within the table is

modified. All DDL and DML statements that are executed via Impala are subject to an automated

metadata update, which is handled by the catalogd daemon and begins with version 1.2 of the

Impala database. For more information, please refer to page 17 of The Impala Catalog Service.

You should still use the REFRESH statement (when new data files are added to existing tables) or the

INVALIDATE METADATA statement (for entirely new tables or after dropping a table, performing an

HDFS rebalance operation, or deleting data files) when performing DDL and DML operations through

Hive or making changes manually to files in HDFS. The retrieval of metadata for all tables that are

monitored by the metastore is performed when the INVALIDATE METADATA command is issued on

its own. If you are aware that only some tables have been modified outside of Impala, you may use

the command REFRESH table name for each table that has been impacted to only obtain the most

recent metadata for the tables that have been modified.

How Impala Uses HDFS

As its primary form of data storage, Impala makes extensive use of the distributed filesystem HDFS.

When it comes to protecting itself from failures in hardware or networks on individual nodes, Impala

depends on the redundancy offered by HDFS. The information included inside Impala tables is stored

in HDFS in the form of data files, and these files make use of the standard HDFS file formats and

compression codecs. Impala will read all of the data files that are present in the directory for a new

table, notwithstanding the fact that each file has a different name. Impala assigns new names to

existing files before adding new data to them.

How Impala Uses HBase

An alternate storage media for Impala data is HBase, which is an alternative to HDFS. It is a database

storage system that is built on top of HDFS, however it does not have any built-in support for SQL. A

great number of Hadoop users already have it installed and store enormous data sets in it that are

often sparse. You will be able to query the contents of HBase tables using Impala if you first define

such tables in Impala and then map them to similar tables in HBase. You may even conduct join

queries that include both Impala and HBase tables in the results set.

SQL queries that are run on data that is stored in common Apache Hadoop file formats may be

executed by the Apache Impala with high speed and low latency.

The following is an inventory of the components that make up the Impala solution.

Impala: The Impala service is responsible for the coordination and execution of queries that are

received from users. The queries are subsequently divided over the several Impala nodes, which

then take on the role of workers to carry out the simultaneous query fragments.

The Hive Metastore: is where information on the data that is accessible to Impala is stored. For

instance, the metastore provides Impala with information on the databases that are accessible as

well as the layout of those databases. Impala's dedicated catalogue service is responsible for

automatically broadcasting any relevant metadata changes to all of Impala's nodes whenever you

make changes to the schema (such as creating, dropping, or altering objects), load data into tables,

or perform any other operation using SQL statements.

Clients: Interactions with Impala may be carried out by a wide variety of entities, including Hue,

ODBC clients, JDBC clients, Business Intelligence applications, and the Impala Shell. Typically, queries

and administrative actions like connecting to Impala are carried out with the assistance of these

interfaces.

Constituent parts of the Impala

The Impala service is a massively parallel processing (MPP) database engine that operates over a

distributed environment. It is made up of a variety of daemon processes, each of which operates on

a distinct host inside your Hadoop cluster.

The Impala service is comprised of the following groups of processes, which are together referred to

as roles.

Impala Daemon

The Impala daemon, which is physically embodied by the impalad process, is the essential

component of the Impala system. A few of the most important tasks that are carried out by an

Impala daemon are as follows:

• Performs reading and writing operations on data files.

• It'll take queries sent through the impala-shell command, Hue, JDBC, or ODBC if you choose

to use it.

• Performs the queries in parallel and distributes the work evenly among the cluster.

• Sends intermediate query results to the central coordinator for review.

• One of the following strategies might be used to bring about the appearance of Impala

daemons:

• Both HDFS and Impala are hosted on the same physical machine, and each Impala daemon is

executed on the same host as a DataNode.

• Impala is installed independently in a computing cluster, and it retrieves data from HDFS, S3,

ADLS, and other locations through remote connections.

StateStore

The Impala StateStore continually monitors the health of all Impala daemons in a cluster. It's a

statestored daemon process. One cluster host needs this procedure. If one Impala daemon becomes

offline due to hardware failure, network fault, software issue, or other cause, the StateStore notifies

all other Impala daemons so subsequent queries may bypass the inaccessible daemon.

StateStore is not necessarily crucial to the regular functioning of an Impala cluster since it helps

when things go wrong and broadcasts information to coordinators. If the StateStore is not

functioning or unavailable, Impala daemons continue running and distributing tasks as normal with

known data. If additional Impala daemons die, the cluster becomes less resilient and metadata

becomes less consistent. StateStore reestablishes contact with Impala daemons and continues

monitoring and broadcasting when it comes back online.

Queries that access the new object produced by a DDL statement while the StateStore is offline will

fail.

Impala Server

The Catalog Server sends Impala SQL statement information updates to all Impala daemons. It's a

catalogd daemon process. One cluster host needs this procedure. Because queries are transmitted

via StateStore, statestored and catalogd should execute on the same host.

When Impala statements alter metadata, the catalogue service avoids REFRESH and INVALIDATE

METADATA commands. Before running a query on an Impala node after creating a table, loading

data, etc. in Hive, you must perform REFRESH or INVA LIDATE METADATA.

Chapter-8: Apache OOZie

Overview

Oozie apps are comparable to executables found in Unix, whereas Oozie jobs are comparable to the

processes found in Unix. Users of Oozie create applications, and each individual runthrough of an

application is referred to as a job.

Apache Oozie Workflow Scheduler for Hadoop is a workflow and coordination tool for managing

Apache Hadoop processes, including the following:

- Directed acyclic graphs (DAGs) of actions are what make up Oozie Workflow tasks. Generally

speaking, actions are Hadoop jobs (MapReduce, Streaming, Pipes, Pig, Hive, Sqoop, etc).

- Recurring Workflow tasks may be triggered by Oozie Coordinator jobs depending on the

time (or frequency) and the availability of data.

- Oozie Bundle jobs are collections of Coordinator tasks that are treated as a single job for the

purposes of management.

You may utilise Oozie, which is an extensible, scalable, and data-aware service, to coordinate

dependencies across tasks that are operating on Hadoop.

Oozie Workfows

A Hadoop task that consists of many stages is known as an Oozie workflow. A workflow is a

collection of action nodes and control nodes that are organised in a directed acyclic graph (DAG) that

captures control dependence. Each action in a workflow is often a Hadoop job (for example, a

MapReduce, Pig, Hive, or Sqoop job), and a DAG records the control dependency. In addition, there

may be activities that are not classified as Hadoop jobs (e.g., a Java application, a shell script, or an

email notification).

The sequence in which these activities are carried out is determined by the arrangement of the

nodes in the process. In a process, an activity will not begin until the action that came before it has

completed.

It is up to the control nodes in a process to regulate the order in which activities are carried out. The

beginning and the conclusion of a process are denoted by the start control node and the end control

node, respectively. The control nodes known as fork and join make it possible to do out tasks

simultaneously. The decision control node functions similarly to a switch or case statement in that it

may pick a certain execution route inside the work flow by making use of information gleaned

directly from the task. An example of a work flow is shown.

Workflows are directed acyclic graphs, which means that they do not support loops in the flow of

information.

Oozie is a web-based application written in Java that serves as a workflow manager and coordinator.

It is used to manage and coordinate activities in the Hadoop ecosystem. The structure of its work

flow is quite similar to that of a Direct Acyclic Graph (DAG)[1]. Oozie is capable of managing

thousands of tasks in a Hadoop cluster because to its scalable design.

There are three standard occupations available in Oozie.

1. Oozie Workflow Jobs: These jobs indicate the order in which actions are to be carried out.

2. Oozie Coordinator Jobs: Coordinates the task and determines when it should be activated

based on factors such as time and data availability.

3. The Oozie Bundle is a package consisting of numerous Workflow and Coordinator

applications.

Action node and control flow node are both components of the Oozieworkflow.

Action node: An action node is a representation of a workflow activity, such as importing data using

Sqoop, putting files into HDFS, importing data using MapReduce, Pig, or Hive tasks, or executing a

shell script for a programme that was built in Java. Action nodes are responsible for making decisions

on how jobs are carried out.

Control-flow node: A control-flow node directs the flow of work from one action to the next inside a

workflow by permitting features such as conditional logic, which allows for the workflow to take one

of many possible paths based on the outcome of a previous action node.

There is just one control node, but the number of jobs determines how many action nodes will be

created. The number of jobs and the action node's own count will always be equal.

Oozie Architecture

The Oozie server is implemented as a Java web application, and all of the required data is saved in a

database. Any kind of database will do, whether it Derby, MySQL, or Oracle, for example. Hadoop

cluster serves as the repository for all tasks. Oozie customer contact to the Oozie server, which will

be responsible for maintaining and processing the tasks. Following the processing of the data,

valuable information is saved in the database. Hadoop cluster serves as the repository for all tasks.

The Oozie client makes contact with the Oozie server so that jobs can be managed and processed.

Following the processing of the data, valuable information is saved in the database.

Use-Cases of Apache Oozie

Apache Oozie is used by Hadoop system administrators to run complex log analysis on HDFS.

Hadoop Developers use Oozie for performing ETL operations on data in a sequential order and

saving the output in a specified format (Avro, ORC, etc.) in HDFS. In an enterprise, Oozie jobs are

scheduled as coordinators or bundles.

Oozie Editors

Before we dive into Oozie lets have a quick look at the available editors for Oozie. Most of the time,

you won’t need an editor and will write the workflows using any popular text editors (like

Notepad++, Sublime or Atom) as we will be doing in this tutorial.

But as a beginner it makes some sense to create a workflow by the drag and drop method using the

editor and then see how the workflow gets generated. Also, to map GUI with the

actual workflow.xml created by the editor. The most popular among Oozie editors is Hue.

Hue Editor for Oozie

This editor is very handy to use and is available with almost all Hadoop vendors’ solutions. The

following screenshot shows an example workflow created by this editor.

You can drag and drop controls and actions and add your job inside these actions.

Oozie Eclipse Plugin (OEP)

Oozie Eclipse plugin (OEP) is an Eclipse plugin for editing Apache Oozie workflows graphically. It is a

graphical editor for editing Apache Oozie workflows inside Eclipse. Composing Apache Oozie

workflows is becoming much simpler. It becomes a matter of drag-and-drop, a matter of connecting

lines between the nodes. The following screenshots are examples of OEP.

Oozie Workflow

The OOZIE Workflow is a set of actions that are organised in a DAG. Definition of an Oozie process

written in the hPDL language. The Oozie process has a set of nodes, including the Start control node,

the End control node, the Kill control node, the Decision node, the Fork node, and the Join node.

a. Start control node: Every Oozie workflow has to have a start control node, and the workflow

will always begin execution from the start control node.

b. End control node: Once the task has been successfully finished, it will proceed to the end

control node. When you reach the end control node, it indicates that there were no errors.

c. Kill control node: If we want to stop the workflow from being executed, then we need to

utilise the kill control node. It is possible that there are many kill control nodes.

Chpater-9: Apache Kafka

Overview

Apache Kafka is a platform for continuously receiving messages. It is built with high performance,

high availability, and redundancy in mind from the beginning.

The following are some examples of apps that may leverage such a platform:

• Things Connected to the Internet Telemetry data may be sent back to a server via the

Internet from a variety of devices, including televisions, refrigerators, washing machines,

dryers, thermostats, and personal health monitors.

• Sensing and Control Networks. It is possible to equip both expansive environments (such as

farms, amusement parks, and woods) and intricate machines (such as engines) with a variety

of sensors to monitor data or the present state of the environment.

• Positional Data. Sending location data to a centralised platform is possible for delivery

vehicles as well as massively multiplayer online games.

• Any Additional Real-Time Data. Satellites and medical sensors both have the ability to

transmit data to a centralised location for further analysis.

Pub Sub System

The ideal publish-subscribe system is one that is simple and uncomplicated: the messages published

by Publisher A need to find their way to Subscriber A, the messages published by Publisher B need to

find their way to Subscriber B, and so on.

• Unlimited Lookback is a perk that should be included in any ideal system. At any given

moment in time, a new Subscriber A1 is able to read the stream that is being published by

Publisher A.

• Message Retention. No messages are lost.

• No limits on the storage space. Messages can be stored in the publish-subscribe system in an

unlimited capacity.

• Absolutely no downtime. The publish-subscribe system never goes offline for maintenance.

• There are no scaling limits. The publish-subscribe system is able to accommodate an

unlimited number of publishers and/or subscribers while maintaining a consistent delivery

latency for messages.

Kafka Architecture

The design of Kafka deviates from that of the ideal publish-subscribe system, as is the case with all

systems that exist in the actual world. Some of the most important distinctions are as follows:

• A replicated and distributed commit log serves as the foundation upon which messaging is

built.

• Because the customer now has additional functionalities, they are also responsible for a

greater amount.

• Instead of individual messages, batch messaging is tuned to work more efficiently.

• Messages are kept even after they have been eaten, and users have the ability to consume

them again.

These design choices have led to the following outcomes:

• Extreme horizontal scalability

• Very high throughput

• High availability

• However, distinct semantics and message delivery guarantees are guaranteed.

Topics

In the hypothetical system that was just described, messages sent out by a single publisher would

magically make it to the inboxes of each subscriber.

Kafka incorporates the idea of a topic into his writing. The use of a topic makes it easier for

publishers and subscribers to find each other.

A queue of messages that have been produced by one or more producers and read by one or more

consumers is what we mean when we talk about a subject. The name of a subject is what identifies

it. This name is a component of a namespace that is used globally by that Kafka cluster.

Only applicable to Kafka: Subscribers are referred to as consumers, while publishers are referred to

as producers. When a producer or consumer connects their device to the publish-subscribe system,

they are granted the ability to read from or contribute to a particular subject.

Brokers

Kafka is a distributed system that embodies the fundamental elements of the publish-subscribe

architecture defined earlier as the ideal.

Each host that makes up the Kafka cluster is responsible for running a server that is known as a

broker. This broker stores messages that have been submitted to topics and fulfils consumer

requests.

Kafka was developed to operate on numerous hosts simultaneously, with a separate broker running

on each server. If one of the hosts stops working for whatever reason, Kafka will do all in its power

to keep the others operational. This helps to achieve some of the criteria for the ideal publish-

subscribe system, including "No Downtime" and "Unlimited Scaling."

All of the Kafka brokers communicate with Zookeeper in order to provide distributed coordination,

which provides further support for the "Unlimited Scaling" requirement of the ideal system.

The same topics are discussed by many brokers. In order to achieve the objectives of "No

Downtime," "Unlimited Scaling," and "Message Retention," replication is an essential component.

There is a single broker who is in charge of organising the activities of the cluster. This particular

broker is referred to as the controller. As was discussed before, the optimal behaviour of a topic is

that of a queue of messages. In point of fact, having just a single queue causes scale problems. The

implementation of partitions in Kafka is what contributes to the topics' resilience.

Records

A record is the term used in Kafka to refer to a publish-subscribe message. A record is made up of a

key-value pair as well as other information, which may include a timestamp. The key is optional;

however, it may be used to distinguish messages coming from the same data source. Arrays of bytes

are used for the storage of keys and values in Kafka. Aside from that, it does not care about the

format at all.

Headers are something that may be included in the metadata of each record. Key-value pairs may be

used to contain application-specific information when using headers.

In the context of the header, the keys are considered to be strings, while the values are considered

to be byte arrays.

Partitions

Kafka organises the data it manages into partitions, rather than storing them all in a single log as

would be the case with other systems. One way to think of partitions is as a subset of all the records

that pertain to a subject. The concept of "Unlimited Scaling" may be helped along by partitions.

Records that are included inside the same partition are organised according to their time of entry.

When a subject is first formed, it is given two attributes to customise it with:

partition count

The number of partitions that records for this topic will be spread among.

Replication factor: The number of copies of a partition that are maintained to ensure consumers

always have access to the queue of records for a given topic. Each topic has one leader partition. If

the replication factor is greater than one, there will be additional follower partitions. (For the

replication factor = M, there will be M-1 follower partitions.)

Any Kafka client (a producer or consumer) communicates only with the leader partition for data. All

other partitions exist for redundancy and failover. Follower partitions are responsible for copying

new records from their leader partitions. Ideally, the follower partitions have an exact copy of the

contents of the leader. Such partitions are called in-sync replicas (ISR). With N brokers and topic

replication factor M, then

• If M < N, each broker will have a subset of all the partitions

• If M = N, each broker will have a complete copy of the partitions

In the following illustration, there are N = 2 brokers and M = 2 replication factor. Each producer may

generate records that are assigned across multiple partitions.

When it comes to maintaining accurate record throughput, partitions are essential. Choosing the

appropriate number of partitions and replications for a topic does two things: it ensures that the

leader partitions are distributed uniformly throughout the brokers in the cluster, and it ensures that

partitions belonging to the same topic are about the same size. Helps to distribute the workload

among the brokers.

In reality, Kafka is a store that is responsible for storing messages that originate from processes, also

known as producers. After that, the data or messages are partitioned into a number of distinct

partitions inside the respective Topics. The messages are indexed and saved in this Topic's partition

in addition to a timestamp for each message. On the other hand, other processes that are referred

to as Consumers are able to query messages from these partitions. Kafka, which is working between

these producers and consumers, operates on a cluster consisting of one or more servers, and the

partitions may be dispersed among different nodes in the cluster. When Apache Storm, Apache

HBase, and Apache Spark are used in conjunction with Apache Kafka, the real-time streaming data is

processed in an effective and efficient manner. The fundamental structure of Kafka is seen in Figure.

As a result of Kafka being deployed as a cluster on many servers, the complete publish and subscribe

messaging system is managed by Kafka with the assistance of four application programming

interfaces (APIs), namely the producer API, consumer API, streams API, and connector API. Because

of its capacity to provide fault-tolerant delivery of enormous message streams, it has begun to

replace some of the more traditional messaging systems, such as JMS, AMQP, and others. Topics,

records, and brokers are three of the most important concepts in Kafka's architectural scheme. The

stream of records that make up a topic each contain a unique set of information. On the other hand,

the responsibility of reproducing the communications falls on the Brokers.

KAFKA REAL TIME APPLICATIONS

Messaging: Kafka works glowing as a substitute message broker which is used for a variety of

reasons. Kafka has well throughput and built-in partitioning with replication, and fault tolerance

hich makes it a good solution for large scale message processing applications. In our experience

messaging uses are often comparatively low-throughput, but may require low end-to-end latency

and often depend on the strong durability guarantees Kafka provides.

Website Activity Tracking: The original application of Kafka was to be able to rebuild a user activity

tracking pipeline as a set of real-time publish-subscribe feeds means site activity like page views,

searches, or other actions users may take is published to central topics with one topic per activity

type. These feeds are available for subscription for a range of use cases including real-time

processing, real-time monitoring, and loading into Hadoop or offline data warehousing systems for

offline processing and reporting. Activity tracking is often very high volume as many activity

messages are generated for each user page view.

Metrics: Kafka is often used for operational monitoring data. This indulges aggregating statistics

from distributed applications to produce centralized feeds of operational data.

Log Aggregation: Kafka is also used as an alternative to log aggregation solution. Log aggregation

Combines physical log files for servers and places them in a central processing location. Kafka

extracts file details and provides clearer extraction of log or event data as a as a stream of messages.

This allows processing of low latency response time and easier support for multiple data sources and

distributed data consumption. Compared with to log-centric systems such as Scribe or Flume, Kafka

offers equally good performance, stronger durability guarantees due to replication, and much lower

end-to-end latency.

Stream Processing: Kafka users are using Kafka to process data in processing pipelines of multiple

stages, and raw input data are put into use in Kafka and then added, enriched or converted into new

themes for subsequent consumption or tracking. For example, in order to use news articles, a

workstation can scan the content of the article in its RSS content on "articles"; Additional processing

can normalize or reduce this content and publish the content of the pure article to a new topic; the

last run may try to present this content to users. These processing pipelines create real-time data

streams based on individual themes. According to 0.10.0.0, Apache Kafka has a light but powerful

streaming library called Kafka Stream to perform data processing as described above. Apart from

Kafka Streams, alternative tools for the development of open-source script include Apache Storm

and Apache Samza.

Chapter-10: Apache NiFi

Overview

To put it another way, NiFi was developed to automate the transfer of data from one system to

another. Although the word "dataflow" is used in a number of different settings, for the sake of this

discussion, we will use it to refer to the controlled and automatic flow of information between

systems. This issue area has been there since since businesses started using more than one system,

with some of those systems producing data and some of those systems using data for their

operations. Extensive discussion and articulation have taken place with regard to the challenges and

solution patterns that have arisen. The Enterprise Integration Patterns document has a format that is

both comprehensive and easy to consume.

Through the years, dataflow has become one of those undesirable aspects of an architecture that

are required. However, there are a number of active and quickly developing initiatives that are

making dataflow a whole deal more fascinating and a great deal more crucial to the success of any

given business. Among them are topics like service-oriented architecture, the proliferation of

application programming interfaces (APIs), the internet of things, and big data. In addition, the

amount of stringency that is required to ensure compliance, privacy, and security is always

increasing.

Even with all of these new ideas being developed, the patterns and requirements of dataflow have

remained essentially same for the most part.

The key distinctions then are the magnitude of the complexity, the velocity of change that must

occur in order to adapt, and the fact that, at scale, the exceptional instance becomes the norm. NiFi

was developed specifically to assist in overcoming the difficulties associated with current dataflow.

Benefits of NiFi DataFlow

The use of this design paradigm results in a number of advantageous outcomes, which contribute to

NiFi's status as a highly efficient platform for the construction of robust and scalable dataflows. A

few examples of these advantages are as follows:

• Is inherently asynchronous, which allows for very high throughput and natural buffering

even as processing and flow rates fluctuate

• Provides a highly concurrent model without a developer having to worry about the typical

complexities of concurrency

• Promotes the development of cohesive and loosely coupled components, which can then be

reused in other contexts and promotes testable unidirectional dependencies

• Lends itself well to the visual creation and management of directed graphs of processors

• Error management becomes as natural as the happy route rather than a coarse-grained

catch-all due to the resource restricted connections.

• Critical functions such as back-pressure and pressure release become highly natural and

intuitive.

• It is possible to quickly understand and monitor the flow of data across the system, as well

as the points of entry and departure for the data itself.

NiFi Architecture

NiFi is run on a host operating system inside a Java Virtual Machine (JVM). The following is a list of

the key components of NiFi when run on the JVM:

Web Server: The HTTP-based command and control API for NiFi is what the web server will be used

to host as its primary function.

Controller of the Flow: The flow controller is the component that acts as the operation's central

processing unit. It handles the schedule of when extensions obtain resources to execute and offers

threads for them to run on. Extensions may run on these threads.

Extensions: Other publications detail the different sorts of NiFi extensions, which may be found in

their respective dictionaries. The most important thing to understand here is that extensions work

and run inside of the JVM.

FlowFile's File Storage Repository: NiFi maintains a record of the current status of what it knows

about a specific FlowFile that is currently being used in the flow in a location known as the FlowFile

Repository. It is possible to plug different implementations into the repository. The permanent

Write-Ahead Log that is stored on a particular disc partition is the method that is used by default.

Content Repository: The actual content bytes of a specific FlowFile are stored in the Content

Repository, which is referred to simply as the Content Repository. It is possible to plug different

implementations into the repository. The method that is used by default is a rather straightforward

process that saves data in chunks inside the file system. You have the option of specifying more than

one file system storage location in order to have various physical partitions activated and so lessen

the amount of congestion on any one volume.

Provenance Repository: The Provenance Repository is where all of the data on the provenance of

events is housed. The repository structure is pluggable, and the default implementation uses one or

more actual storage volumes. The repository may be expanded using additional plug-ins. Event

information is indexed and searchable inside each place it is stored in.

NiFi as Cluster

NiFi 1.0 uses Zero-Leader Clustering. Each NiFi node conducts the same functions on various data

sets. Apache ZooKeeper automatically selects a Cluster Coordinator and handles failover. The Cluster

Coordinator receives heartbeat and status updates from all nodes. Cluster Coordinator reconnects

nodes. ZooKeeper elects a Primary Node for each cluster. DataFlow managers may interact with the

NiFi cluster using any node's UI. Changes are copied to all cluster nodes, giving numerous access

points.

NiFi Features

 Guaranteed Delivery (Guaranteed Delivery)

NiFi was founded on the principle that even when operating at a very large scale, assured delivery

remains an absolute need.

This is made possible by the efficient use of a purpose-built permanent write-ahead log as well as a

content repository. Together, they have been developed in such a manner as to make it possible for

extremely high transaction rates, efficient load-spreading, copy-on-write, and to play to the

strengths of conventional disc read/write operations.

 Buffering of Data with Back Pressure and Pressure Release

NiFi allows for the buffering of any and all data that is queued, as well as the ability to apply back

pressure to queues when they reach a certain limit or to "age off" data when it hits a certain age

threshold (its value has perished).

 Queuing Based on Priority

In order to retrieve data from a queue in the most efficient manner possible, NiFi permits the setup

of one or more prioritising algorithms.

The most recent data should be retrieved first by default; however, there are situations in which the

data should be fetched in a different order, such as the biggest first or the oldest first.

 Flow-Specific Quality of Service (latency v throughput, loss tolerance, etc.)

There are some places along the path of a dataflow when the data is vitally essential and cannot

tolerate any loss. There are also situations in which it must be processed and transmitted within a

very short amount of time in order for it to be of any use. NiFi makes it possible to configure these

concerns in a manner that is fine-grained and flow-specific.

Ease of Operation

 Command and Control in the Visual Domain

Dataflows have the potential to become pretty complicated. Having the ability to view those

movements and communicate them graphically may be a huge assistance in reducing that

complexity and determining which areas need to be reduced. NiFi not only allows the construction

of dataflows in a visible manner, but it also does it in real time. It is more comparable to working

with clay than it is to being able to "plan and deploy." If you make a modification to the dataflow,

that it will take effect as soon as you save it. The changes are quite subtle and are confined to the

specific components that were impacted.

It is not necessary to halt a complete flow or collection of flows in order to make a particular

alteration.

 Flow Scheduling Templates

Dataflows have a tendency to be very pattern-oriented, and while there are often many alternative

methods to address an issue, it is really helpful to be able to communicate the best practises that

have been developed. The use of templates enables subject matter experts to construct and publish

their flow designs, while also allowing others to benefit from and participate on these designs.

 Data Provenance

As objects move through the system, NiFi automatically records, indexes, and makes accessible the

provenance data for each item. This applies to fan-in, fan-out, transformations, and other operations

as well. When used to support compliance requirements, troubleshooting, optimization, and a

variety of other situations, this information takes on an incredibly vital role.

 Recording a rolling buffer of fine-grained history as part of the recovery process

The content repository that NiFi uses is intended to perform the function of a rolling buffer of

history. Data is never deleted until it has become obsolete in the content repository or more storage

space is required. This, in conjunction with the data provenance capabilities, allows for an

exceptionally valuable base to enable click-to-content, download of content, and replay, all at a

particular moment in the lifespan of an object, which may even span generations.

Protection

 System to Protection System

When it comes to dataflow, security is the single most important factor. NiFi provides a safe

exchange at every point in a dataflow by making use of protocols that encrypt data, such as 2-way

secure socket layer (2-way SSL). In addition, NiFi makes it possible for the flow to encrypt and

decrypt material, as well as make use of shared keys or other techniques on either the sender or the

receiver side of the equation.

 User to Operating System

NiFi supports two-way SSL authentication and offers pluggable authorization so that it may

effectively regulate a user's access at a variety of different levels (read-only, dataflow manager,

admin). If a user inputs a sensitive property like a password into the flow, it is instantly encrypted on

the server side, and it is never again accessible on the client side, not even in its encrypted version.

An example of such a property would be a credit card number.

 Authorization for Multiple Tenants

Each component is subject to the authority level of a specific dataflow, which enables an

administrative user to exercise granular control over the access granted to other components. This

indicates that each NiFi cluster has the capacity to meet the needs of one or more enterprises

simultaneously. When compared to isolated topologies, multi-tenant authorization makes it possible

to implement a self-service model for the management of dataflow. This model gives each group or

organisation the ability to manage flows while maintaining full awareness of the portions of the flow

to which they do not have access.

Extensible Architecture

 Extension

NiFi was designed from the ground up to be extensible, and as such it functions as a platform on

which dataflow operations may be carried out and interact with one another in a way that is both

dependable and consistent. Processors, Controller Services, Reporting Tasks, Prioritizers, and

Customer User Interfaces are all examples of points of extension.

 Isolation of the Classloader

Dependency issues may arise very fast in any system that is built using components. This problem is

addressed by NiFi, which provides a special class loader mechanism. This approach ensures that each

extension bundle is only accessible to a very restricted range of dependencies, which solves the

problem. As a consequence of this, extensions may be developed with very little consideration given

to the possibility that they would be incompatible with another extension. The idea behind these

extension packages is referred to as "NiFi Archives," and it is covered in the Developer's Guide in

further detail.

 Site-to-Site Communication Protocol

The NiFi Site-to-Site (S2S) Protocol is the recommended method of communication for using

between different instances of NiFi. The use of S2S makes it simple to move data from one instance

of NiFi to another in a way that is quick, effective, and safe. It is simple to build NiFi client libraries

and incorporate them into other programmes or devices so that they may connect with NiFi via the

S2S protocol. It is feasible to include a proxy server into the S2S communication since the socket-

based protocol as well as the HTTP(S) protocol are supported in S2S in their capacity as the

underlying transport protocol.

Flexible Scaling Model

 Scaling-out of the (Clustering)

As was discussed before, NiFi was developed to be able to scale out by using the clustering together

of a large number of nodes.

If the provisioning and configuration of a single node is capable of handling hundreds of megabytes

per second, then it should be possible to design even a small cluster to handle gigabytes per second.

This therefore presents some intriguing issues in the form of load balancing and fail-over between

NiFi and the systems from which it obtains its data. It may be beneficial to make use of

asynchronous queuing-based protocols such as message services, Kafka, and so forth. Use of

NiFi's'site-to-site' feature is also very effective because it is a protocol that enables NiFi and a client

(including another NiFi cluster) to talk to each other, share information about loading, and exchange

data on specific authorised ports. This is achieved through the use of NiFi's'site-to-site' feature,

which can be found in the NiFi UI.

 Scale up or down

NiFi may also be scaled up or down in a fairly flexible manner due to the way it was created. When

setting NiFi, under the Scheduling tab, it is possible to increase the number of concurrent jobs

running on the processor, which, from the perspective of the NiFi framework, will result in a higher

throughput. This makes it possible for more processes to run at the same time, which results in

increased throughput. On the other end of the spectrum, it is possible to scale NiFi down to the

point where it is acceptable for running on edge devices. This is useful in situations where a minimal

footprint is desirable owing to restricted hardware resources.

The fundamental ideas of NiFi

The core ideas behind NiFi's architecture have a lot in common with the underlying principles behind

flow-based programming. The following is a list of some of the most important topics related to NiFi:

Flow File: Each item that is processed by the system is denoted by a FlowFile, and NiFi maintains a

map of key/value pair attribute strings and the accompanying content of zero or more bytes for each

FlowFile.

FlowFile Processor: Processors are the components that are responsible for carrying out the task. To

put it another way, a processor is responsible for some combination of data routing, data

transformation, and system-to-system mediation. The properties of a certain FlowFile and the

content stream of that file may be accessed by processors. In each given unit of work, processors are

able to perform operations on zero or more FlowFiles and then either commit or rollback the results

of those operations.

Connections: Connections are what offer the real connectivity between different processors in a

system. These serve as queues, enabling a variety of processes to engage with one another at

varying speeds. These queues may have their priorities changed on the fly, and they can also have

higher load boundaries, which enables back pressure to be applied.

Flow Controller: The Flow Controller is responsible for retaining the information of how processes

relate to one another as well as managing the threads and allocations of those threads that are used

by all processes. The Flow Controller performs the role of a broker and makes it possible for

processors to trade FlowFiles with one another.

Process Group: Process Group: A Process Group is a particular group of processes and their

connections that may accept data via the use of input ports and send data out using output ports. A

Process Group is sometimes referred to as a process cluster. In this way, process groups make it

possible to generate completely new components only by composing existing components.

The use of this design paradigm results in a number of advantageous outcomes, which contribute to

NiFi's status as a highly efficient platform for the construction of robust and scalable dataflows. A

few examples of these advantages are as follows:

• Is inherently asynchronous, which allows for very high throughput and natural buffering

even as processing and flow rates fluctuate

• Provides a highly concurrent model without a developer having to worry about the typical

complexities of concurrency

• Promotes the development of cohesive and loosely coupled components, which can then be

reused in other contexts and promotes testable unidirectional dependencies

• Lends itself well to the visual creation and management of directed graphs of processors

• Error management becomes as natural as the happy route rather than a coarse-grained

catch-all due to the resource restricted connections.

• Critical functions such as back-pressure and pressure release become highly natural and

intuitive.

• It is possible to quickly understand and monitor the flow of data across the system, as well

as the points of entry and departure for the data itself.

Chapter-13: Apache Phoenix

Overview
Apache Phoenix is an open source, massively parallel, relational database engine supporting OLTP

for Hadoop using Apache HBase as its backing store. Phoenix provides a JDBC driver that hides the

intricacies of the NoSQL store enabling users to create, delete, and alter SQL tables, views, indexes,

and sequences; insert and delete rows singly and in bulk; and query data through SQL. Phoenix

compiles queries and other statements into native NoSQL store APIs rather than using MapReduce

enabling the building of low latency applications on top of NoSQL stores. Apache Phoenix OLTP and

operational analytics for Apache Hadoop. Apache Phoenix enables OLTP and operational analytics in

Hadoop for low latency applications by combining the best of both worlds:

1. The power of standard SQL and JDBC APIs with full ACID transaction capabilities.

2. And the flexibility of late-bound, schema-on-read capabilities from the NoSQL world by

leveraging HBase as its backing store

Apache Phoenix is fully integrated with other Hadoop products such as Spark, Hive, Pig, Flume, and

Map Reduce.

Apache Phoenix History
Phoenix began as an internal project by the company salesforce.com out of a need to support a

higher level, well understood, SQL language. It was originally open-sourced on GitHub on 28 Jan

2014 and became a top-level Apache project on 22 May 2014. Apache Phoenix is included in the

Cloudera Data Platform 7.0 and above,[5] Hortonworks distribution for HDP 2.1 and above, is

available as part of Cloudera labs and is part of the Hadoop ecosystem.

Apache Phoenix & SQL Support

Apache Phoenix takes your SQL query, compiles it into a series of HBase scans, and orchestrates the

running of those scans to produce regular JDBC result sets. Direct use of the HBase API, along with

coprocessors and custom filters, results in performance on the order of milliseconds for small

queries, or seconds for tens of millions of rows.

All standard SQL query constructs are supported, including SELECT, FROM, WHERE, GROUP BY,

HAVING, ORDER BY, etc. It also supports a full set of DML commands as well as table creation and

versioned incremental alterations through our DDL commands.

Apache Phoenix JDBC Connection

Connection conn = DriverManager.getConnection("jdbc:phoenix:server1,server2:3333",props);

where props are optional properties which may include Phoenix and HBase configuration properties,

and the connection string which is composed of:

jdbc:phoenix [:<zookeeper quorum> [:<port number> [:<root node> [:<principal> [:<keytab

file>]]]]]

For any omitted parts, the relevant property value, hbase.zookeeper.quorum,

hbase.zookeeper.property.clientPort, and zookeeper.znode.parent will be used from hbase-

site.xml

configuration file. The optional principal and keytab file may be used to connect to a Kerberos

secured cluster. If only principal is specified, then this defines the user name with each distinct user

having their own dedicated HBase connection (HConnection). This provides a means of having

multiple, different connections each with different configuration properties on the same JVM.

For example, the following connection string might be used for longer running queries, where the

longRunningProps specifies Phoenix and HBase configuration properties with longer timeouts:

Connection conn = DriverManager.getConnection(“jdbc:phoenix:my_server:longRunning”,

longRunningProps);

while the following connection string might be used for shorter running queries:

Connection conn = DriverManager.getConnection("jdbc:phoenix:my_server:shortRunning",

shortRunningProps);

About Apache Phoenix
Apache Phoenix is an SQL layer for Apache HBase and provides a programming ANSI SQL interface.

Using Apache Phoenix, you can create and interact with tables in the form of typical DDL/DML

statements using the Phoenix standard JDBC API. Apache Phoenix is converting HBase into SQL

Databases. HBase, is a distributed NoSQL store and if you need OLTP and Analytics over HBase than

Phoenix.

Phoenix enables OLTP and operational analytics in Hadoop for low latency applications combining

the best of both worlds.

 The Power of standard SQL and JDBC APIs with full ACID transaction capabilities.

 The flexibility of late-bound, schema-on-read capabilities from the NoSQL world by

leveraging HBase as its backing store.

 Apache Phoenix has Embedded JDBC Driver which implements the majority of java.sql

interfaces, including metadata API's.

 Apache Phoenix allows columns to be modelled as a multi-part row key or key/value cells.

 Full query support with predicate push down and optimal scan key formation.

 DDL support: CREATE TABLE, DROP TABLE, and ALTER TABLE for adding/removing columns.

 Versioned schema repository. Snapshot queries use the schema that was in place when data

was written.

 DML support: UPSERT VALUES for row-by-row insertion, UPSERT SELECT for mass data

transfer between the same or different tables, and DELETE for deleting rows.

Relational Layer

 Apache Phoenix is a relational layer for Apache HBase

 Query Engine:

o Transform SQL Queries and parses into native HBase API calls. This is in-directly

MapReduce.

o Apache Phoenix pushes as much work as possible onto the cluster for parallel

execution.

o Metadata Repository: This is a Phoenix table itself which helps in typed access to

data stored in HBase tables. It stores tables, views, sequence definitions, secondary

indexes. For your perspective it’s a JDBC Driver.

Apache Phoenix Integration with Hadoop

Apache Phoenix is fully integrated with other Hadoop products such as Spark, Hive, Pig Flume and

MapReduce. For your perspective Apache Phoenix is just like a JDBC driver.

Apache HBase

Apache HBase is a high performance horizontally scalable datastore engine for BigData, suitable as

the store of record for mission critical data.

Phoenix and SQL

 Accessing HBase data with Phoenix can be substantially faster than direct HBase API use.

 Phoenix parallelizes queries based on stats. HBase does not know how to chunk queries

beyond scanning an entire region.

 Phoenix pushes processing to the server.

 If you write your own API call, this may not use coprocessors.

 Phoenix has a huge difference for aggregations vs direct HBase API calls.

 Phoenix supports and uses secondary indexes.

Apache Phoenix takes your SQL Query, compiles into a series of HBase scans, and orchestrate the

running of those scans to produce regular JDBC result sets. Direct use of the HBase API, along with

coprocessors and custom filters, results in performance on the order of milliseconds from small

queries, or seconds for tens of millions of rows.

All standard SQL constructs are supported, including SELECT, FROM, WHERE, GROUP BY, HAVING,

ORDER BY etc.

Apache Phoenix also supports a full set of DML commands as well as table creation and versioned

incremental alterations through our DDL commands.

Phoenix not supported SQL Construct

Below is the list of constructs which are currently not supported.

 Relational Operators: Intersect, Minus

 Miscellaneous Built-In functions:

Phoenix Knobs and Dials

Phoenix provides many different knobs and dials to configure and tune the system to run more

optimally on your cluster. The configuration is done through a series of Phoenix-specific properties

specified for the most part in your client-side hbase-site.xml file. In addition to these properties,

there are of course all the HBase configuration properties.

Cloudera Operational Database

Cloudera Operational Datastore is a real-time auto-scaling operational database powered by Apache

HBase and Apache Phoenix. COD is an experience which runs in CDP. Cloudera Operational Database

experience allows self-service creation and management of an operational database. You can

provision a new database with a single click, build application against it and deploy it on the public

cloud without complexity.

Apache Phoenix Use Cases

1. We can use Apache Phoenix for storing data as a basis for measuring activities and

generating reports. You should choose Phoenix because it provides the scalability of HBase

and the expressiveness of SQL.

2. Phoenix can be used for on Demand Data aggregations. If you have floating time range of

 1

Contents
Chapter-1: Apache HDFS ... 1

Overview ... 1

HDFS cluster components and their respective roles ... 1

Advantages of using HDFS .. 2

NameNodes... 2

DataNodes ... 2

JournalNodes .. 3

The Architecture of HDFS .. 3

Read Operations on the HDFS... 5

HDFS Operation for Writing .. 6

HDFS FAQ .. 8

Chapter-1: Apache HDFS

Overview

Hadoop Distributed File System, often known as HDFS, is a file system that is based on Java and

offers scalable data storage.

- NameNode: The NameNode of an HDFS cluster is responsible for managing the namespace

of the cluster.

- DataNode: while the DataNodes are used to store data.

HDFS was designed to span huge clusters of commodity systems. The Hadoop Distributed File

System (HDFS) serves as the platform's data management layer. YARN is responsible for the

administration of the resources, whereas HDFS is in charge of storage.

HDFS is a distributed storage system that is scalable, fault-tolerant, and works closely with a broad

range of applications that access data concurrently. By spreading storage and computing among a

large number of servers, the total storage resource may expand in a linear fashion in response to

increased demand.

Because HDFS can be scaled up or down depending on the requirements, it is truly quite difficult to

find any substitute for HDFS that is suitable for storing Big Data. Hadoop is being used by a

significant number of the largest corporations in the world. Hadoop is used by several companies,

including Amazon, Facebook, Microsoft, Google, Yahoo, IBM, and General Electrics, to store and

analyse enormous volumes of data.

HDFS cluster components and their respective roles

The primary components of an HDFS cluster are referred to as the NameNode and the DataNodes

respectively.

https://www.hadoopexam.com/

 2

The NameNode: is responsible for managing the metadata of the cluster, which includes the file and

directory hierarchies, rights, changes, and quotas for disc space. The contents of the file are

separated into several data blocks, with each block being copied at a number of different

DataNodes.

The NameNode keeps monitoring on the total number of blocks that have been replicated. In

addition to this, the NameNode stores the full namespace image in RAM and is responsible for

maintaining the namespace tree as well as the mapping of blocks to DataNodes.

In order to prevent single point of failure, High-Availability (HA) clusters include a backup NameNode

for the current one. And clusters synchronise the active and standby NameNodes by using

JournalNodes in the process.

Advantages of using HDFS

The following are some of the advantages provided by HDFS, which are directly responsible for the

effective storage and high availability of data inside the cluster:

- Rack awareness: refers to the physical location of a node while assigning storage and

scheduling jobs.

- Hadoop reduces the amount of data that has to be moved by moving computational

activities directly to HDFS. Whatever computation Hadoop initiates sends all the

computation near to data i.e. on DataNode rather than getting data to the compute node,

this is the biggest advantage and reduce the network traffic. This results in a very

considerable reduction in the overall amount of network I/O and offers extremely high

aggregate bandwidth.

- Utilities: Conduct a real-time analysis of the state of the file system's health and rebalance

the data throughout the various nodes.

- Standby NameNode is a NameNode that offers high availability and provides redundancy

(HA).

NameNodes

NameNodes are responsible for maintaining the HDFS namespace tree as well as a mapping of file

blocks to the DataNodes that are used to store the data.

Only one main NameNode is necessary for a basic HDFS cluster. This primary NameNode is backed

up by a backup NameNode that compresses the NameNode edits log file on a periodic basis. The

NameNode edits log file is a list of HDFS metadata alterations. Because of this, the amount of disc

space used by the log file on the NameNode is decreased, which in turn results in a shorter length of

time required to restart the main NameNode. There are always two NameNodes present in a high-

availability cluster: an active and a backup.

DataNodes

NameNode daemon is responsible for managing the data in a Hadoop cluster, and DataNodes are

the nodes that hold the data. The data in a file is copied and stored on several DataNodes to ensure

its integrity and to facilitate the execution of localised computations in close proximity to the data.

It is important for a cluster's DataNodes to have a consistent appearance. Problems may arise if they

are not consistent with one another. For instance, jobs may fail to complete if DataNodes have a

https://www.hadoopexam.com/

 3

lower total amount of memory because they reach capacity more rapidly than DataNodes with a

higher total amount of memory.

Important: HDFS was set up with a replication factor of three by default. That is, there are always

three copies of the data kept on hand at all times. When you have at least three DataNodes,

Cloudera recommends that you should not select a lower replication factor than the default value of

three. Data loss might result from having a lower replication factor.

JournalNodes

JournalNodes are used to keep active and backup NameNodes in high-availability clusters

synchronised with one another. The active NameNode is the one that makes changes to the HDFS

namespace information and publishes such "edits" to each JournalNode. Whenever there is a

failover, the standby NameNode will promote itself to the active state after first applying all of the

updates that were made in the JournalNodes.

The Architecture of HDFS

There is only one NameNode that is responsible for storing metadata, whereas numerous

DataNodes are in charge of doing the actual storage operations. In order to offer fault tolerance, the

nodes in the cluster are organised into racks. Additionally, copies of data blocks are kept on separate

racks within the cluster.

NameNode holds metadata, whereas DataNode contains real data. Due to the fact that NameNode

is the central component of the cluster, all interactions between the client and the cluster must take

place via NameNode.

Within the cluster, there are a number of DataNodes, each of which has its own local disc on which it

stores HDFS data. DataNode will occasionally communicate through a "heartbeat" message to

NameNode to let it know that it is still active. In addition to this, it copies the data to additional

DataNodes in accordance with the replication factor.

https://www.hadoopexam.com/

 4

Hadoop File System (HDFS) Features

Let's have a look at some of Hadoop Distributed File System's more interesting features right here in

the HDFS lesson.

Storage That Is Distributed: HDFS stores data in a distributed fashion. It then saves each individual

piece of data on a distinct DataNode inside the cluster after first dividing the data into smaller

chunks. In this approach, the Hadoop Distributed File System provides MapReduce with a means by

which it may process a fraction of enormous data sets that have been partitioned into blocks in a

manner that is parallel across numerous nodes. Hadoop revolves on the MapReduce programming

model, while HDFS is the component that makes all of these other features possible.

Blocks: HDFS breaks down massive files into manageable sections called as blocks. The smallest unit

of data that may be stored in a filesystem is called a block. As a client or admin, you do not have any

influence on the block's properties, such as its placement. NameNode is the one that makes all of

these decisions.

HDFS default block size is 128 MB. We have the ability to adjust the size of the block to meet our

specific requirements. This is in contrast to the filesystem used by the operating system, where the

block size is 4 KB.

If the data size is less than the HDFS block size, then the block size will be equal to the data size.

If the size of the file, for instance, is 129 megabytes, then there will be 2 blocks produced for it. The

default size of one block will be 128 megabytes, while the other block will only be one megabyte

since using 128 megabytes would be a waste of space. Hadoop is smart enough to avoid wasting the

remaining 127 megabytes of storage space. Therefore, it is only allocating a 1 MB block for 1 MB

worth of data.

A significant benefit of storing data in such a block size is that it reduces the amount of time spent

seeking on the disc. Another benefit is that the mapper only processes one block at a time when it

performs its operations. So, one mapper handles enormous data at a time.

The Act of Repeating: Hadoop HDFS produces two identical copies of each block it stores. This

process is referred to as replication. The data for each block is copied and kept on separate

DataNodes distributed across the cluster. It tries to store at least one duplicate on a distinct rack for

each original.

What exactly is a Rack?

Racks are used to organise the DataNodes. A single switch connects all of the nodes in a rack. Hence,

data may be accessed from another rack even if an individual switch or the whole rack becomes

inoperable.

As previously discussed, the default replication factor is 3, but it is possible to alter this to the

appropriate values according to the demand by modifying the configuration files (hdfs-site.xml).

High Availability: Data availability can be achieved by replicating data blocks and storing them on

numerous nodes distributed across the cluster.

Data Reliability: Data is replicated in HDFS, as we have seen previously. Because of replication,

blocks maintain a high availability even in the event that a node or piece of hardware fails. In the

event that the DataNode fails, the block will still be available from any other DataNode that has a

https://www.hadoopexam.com/

 5

duplicate of the block. Additionally, even if the rack collapses, the block will still be accessible on the

alternative rack. This is how HDFS ensures the integrity of its data storage while also providing fault

tolerance and high availability.

Fault Tolerance: Hadoop and the other components of the ecosystem may benefit from the fault-

tolerant storage layer that HDFS offers.

HDFS is designed to run on commodity hardware, which refers to systems that have average

configurations and a high likelihood of crashing at any given moment. Because of this, the HDFS

system duplicates data and stores it in many locations. This helps to ensure that the system as a

whole is very resilient to errors.

Scalability: Scalability refers to the capacity to increase or decrease the size of the cluster. There are

two methods in which we can grow Hadoop HDFS.

- Vertical Expansion or scalability: We are able to install more drives on the data nodes. In

order to do this, we need to make changes to the configuration files and add entries that

match to the newly inserted drives. Increasing disk size is a vertical scalability.

- Horizontal Scalability: is an additional method of scalability that consists of the capability of

adding more nodes (Data Nodes) to the cluster dynamically and without incurring any

downtime. This technique is referred to as horizontal scaling. We are able to add as many

nodes as we like to the cluster at any one moment, in real time, without experiencing any

kind of outage.

Access to application data with a high throughput: The Hadoop Distributed File System enables

users to access application data with a high throughput. The quantity of work completed in a certain

length of time is referred to as the throughput. It is often used as a method for measuring the

system's overall performance, and it provides a description of the rate at which data is retrieved

from the system.

When we wish to carry out a procedure or an operation using HDFS, the work is partitioned and

distributed over a number of different computers. Therefore, each of the systems will independently

and simultaneously carry out the duties that have been allocated to them. Because of this, the task

will be finished in a relatively short amount of time. Therefore, HDFS provides a strong throughput

because of its parallel data reading capabilities.

Read Operations on the HDFS

When a client wants to read any file from HDFS, the client has to communicate with NameNode

since NameNode is the only location that keeps metadata about DataNodes. This means that

whenever a client wants to read any file from HDFS, the client needs to interact with NameNode.

NameNode is responsible for specifying the address of the slaves or the place where the data is kept.

The client will engage in interaction with the DataNodes that have been configured and read the

data from those locations. In order to ensure the client's authenticity and safety, the NameNode

sends it a token, which the client then presents to the DataNode before beginning to read the file.

In the Hadoop HDFS read operation, the client must first interact with the NameNode in order to

read data that is stored in HDFS if the client wishes to read data that is stored in HDFS. Therefore,

the client engages in interaction with the API of the distributed file system and submits a request to

https://www.hadoopexam.com/

 6

NameNode to provide the block location. As a result, NameNode examines the client to determine

whether or not they have enough credentials to access the data. If the client has the necessary

credentials, then the NameNode will provide the address of the DataNode at which the data is kept.

Along with the address, NameNode also provides the client with a security token. In order to access

the data, the client is required to provide the security token to DataNode for the purposes of

authentication.

When a client travels to DataNode for the purpose of reading the file, DataNode first checks the

token, and then it grants permission to the client to read that specific block. Following this step, a

client will access the input stream and begin reading data from the DataNodes that have been

configured. The client obtains the data in this fashion by reading it straight from the DataNode.

In the event that the DataNode unexpectedly goes down while a file is being read, a client will once

again travel to the NameNode, and the NameNode will share another location with the client where

that block may be found.

HDFS Operation for Writing

As can be observed when the client is reading a file, it is necessary for the client to interface with

NameNode. In a similar way, in order for the client to write a file, they need to communicate with

the NameNode.

NameNode gives the client the address of the slaves on which data has to be written in order for the

client to complete the transaction.

After the client has completed writing the block, the slave will begin copying the block into another

slave, which will then copy the block and send it to the third slave. When the standard replication

factor of three is used, this is the result that is obtained. Once all of the necessary replications have

been performed, it will send a final acknowledgement to the client.

https://www.hadoopexam.com/

 7

Any time a client wants to write any data, it is required to communicate with the NameNode in

order to do so. The client then communicates with the API for the distributed file system and

requests that NameNode transmit a slave location.

The client will then begin writing the data by interacting with the DataNode at where the data has to

be written and will begin writing the data via the FS data output stream. Following the completion of

writing and replicating the data, the DataNode will send an acknowledgement to the client alerting

them that the data has been written in its entirety.

When the client has finished writing to the first block, the first DataNode will immediately duplicate

that block to any additional DataNodes that are connected to it. Therefore, after it has received the

block, DataNode will begin the process of copying that block to the third DataNode. The third

DataNode will send an acknowledgement to the second DataNode, the second DataNode will send

an acknowledgment to the first DataNode, and finally, the first DataNode will send the final

acknowledgment.

The client only sends one copy of the data regardless of the replication factor, but the DataNodes

are responsible for replicating the blocks. Therefore, writing a file on Hadoop's HDFS does not incur

any additional costs since many blocks of the file are written in parallel across various DataNodes.

Utilizing Cloudera Manager to relocate the JournalNode, which updates the directory for a role

group: You have the ability to modify the location of the edit’s directory for each JournalNode that is

a part of the JournalNode Default Group, depending on the needs of your organisation.

By using Cloudera Manager, you may move the JournalNode edits directory for a role instance:

You are free to adjust the location of the edits directory for one JournalNode instance in accordance

with the specifications of your project.

Bringing the contents of JournalNodes into synchronisation: You have the ability to synchronise the

data that is included inside the JournalNodes that are part of your CDP Private Cloud Base cluster.

When this feature is enabled, it helps to preserve consistency in the contents of all of the

JournalNodes that are distributed across the cluster. For instance, if the contents of a JournalNode

become inconsistent, it is possible for that JournalNode to automatically duplicate the contents of

the other JournalNodes in the cluster in order to restore consistency.

https://www.hadoopexam.com/

 8

HDFS FAQ

Question-1: How NameNode handles the management of blocks on a DataNode that has failed?

Answer: After a certain amount of time has passed without any heartbeats, a DataNode is said to be

dead.

Question-2: To replace a disc on a DataNode host, follow these steps?

Answer: You have the ability to repair defective discs that are hosted on the DataNode in your CDP

Private Cloud Base cluster. Before you can replace the malfunctioning disc, all managed services

need to be stopped, and the DataNode role instance has to be decommissioned.

Question-3: How do you take out one of the DataNodes?

Answer: Make sure that all of the conditions for deleting a DataNode have been completed before

you attempt to remove it.

Question-4: How do you put an end to irregularities in the blocks?

Answer: You may get information on inconsistencies with the HDFS data blocks by using the output

of the hdfs fsck or hdfs dfsadmin -report commands. These inconsistencies include missing,

misreplicated, or underreplicated blocks. You have the flexibility to choose from a variety of

approaches to remedy these discrepancies.

Question-5: How do you use the Cloudera Manager to add storage directories?

Answer: Using Cloudera Manager, you may create a new storage directory and choose the kind of

storage the directory will use.

Question-6: How do you use Cloudera Manager, get rid of the storage folders?

Answer: Using Cloudera Manager, you are able to delete already existing storage folders and define

new directories.

Question-7: How do you set up the storage balancing configuration for DataNodes?

Answer: You have the ability to configure HDFS to distribute writes on each DataNode in a way that

maintains a consistent level of available storage across all disc volumes on that DataNode.

Question-8: How do you utilize Cloudera Manager, carry out a disc hot swap on the DataNodes?

Answer: You won't need to restart a DataNode in order to change discs on the CDP Private Cloud

Base cluster you're using. The term for this practise is "hot switch."

Question-9: What is HDFS used for?

Answer: Hadoop Distributed File System also known as HDFS is used for storing structure and

unstructured data in distributed manner by using commodity hardware.

Question-10: What is Hadoop Distributed File System and what are its components?

Answer: Hadoop HDFS is a distributed file-system that stores data on commodity machines,

providing very high aggregate bandwidth across the cluster.

https://www.hadoopexam.com/

 9

Components of HDFS: HDFS comprises of 3 important components NameNode, DataNode and

Secondary NameNode.

HDFS operates on a Master-Slave architecture model where the NameNode acts as the master node

for keeping a track of the storage cluster and the DataNode acts as a slave node summing up to the

various systems within a Hadoop cluster.

Question-11: What is NameNode and DataNode in HDFS?

Answer: Namenode is the master and DataNodes are slaves NameNode manages the filesystem

namespace. It maintains the filesystem tree and the metadata for all the files and directories in the

tree.

DataNodes are the workhorses of the filesystem. They store and retrieve blocks when they are told

to (by clients or the NameNode), and they report back to the NameNode periodically with lists of

Blocks that they are storing. Without the NameNode, the filesystem cannot be used.

Question-12: Why Hadoop uses filesystem for storage?

Answer: HDFS is built to support applications with large data sets, including individual files that

reach into the terabytes. File systems are more affordable to handle huge amount of data.

Question-13: What is meant by Data node?

Answer: Data node is the slave deployed in each of the systems and provides the actual storage

locations and serves read and writer requests for clients.

Question-14: What is daemon?

Answer: Daemon is the process that runs in background in the UNIX environment. In Windows it is

‘services’ and in DOS it is ‘TSR’.

Question-15: What is meant by heartbeat in HDFS?

Answer: Data nodes and task trackers send heartbeat signals to Name node and Job tracker

respectively to inform that they are alive. If the signal is not received it would indicate problems with

the node or task tracker.

Question-16: Is it necessary that Name node and job tracker should be on the same host?

Answer: No! They can be on different hosts.

Question-17: What is meant by ‘block’ in HDFS?

Answer: Block in HDFS refers to minimum quantum of data for reading or writing. Default block size

is 128 MB in HDFS.

Question-18: Can blocks be broken down by HDFS if a machine does not have the capacity to copy as

many blocks as the user wants?

Answer: Blocks in HDFS cannot be broken. Master node calculates the required space and how data

would be transferred to a machine having lower space.

Question-19: How is data replicated in HDFS?

https://www.hadoopexam.com/

 10

Answer: HDFS is designed to be fault-tolerant. Large HDFS data files are split into smaller chunks

called blocks and each block is stored in multiple DataNodes across the cluster. The block size and

the replication factor can be configured per file.

HDFS is rack aware for multi-clustered environments, and takes this into consideration when

replicating blocks for fault-tolerance. HDFS ensures that the blocks are replicated on DataNodes that

are on different racks, so if a rack goes down the data is still available from the DataNode on the

other rack.

Question-20: Explain how indexing in HDFS is done?

Answer: Hadoop has a unique way of indexing. Once the data is stored as per the block size, the

HDFS will keep on storing the last part of the data which say where the next part of the data will be.

https://www.hadoopexam.com/
https://www.hadoopexam.com/Cloudera_Certification/CCA159/What_is_cloudera_certifications_CCA131_CCA175_CCA159_CCPDE575_Exam.html

 1

Contents
Chapter-2 Apache Ozone .. 1

Overview ... 1

Ozone architecture ... 3

Advanced Concepts ... 7

Chapter-2 Apache Ozone

Overview

Apache Ozone is a tool or product that is used to implement Hadoop's Object Storage architecture.

As we know that Hadoop Distributed File System (HDFS) is used as a native storage for storing data

in Hadoop ecosystem. However, Hadoop Distributed File System (HDFS) is a block storage system

that was created by Apache and designed to be used as a storage layer on the Hadoop architecture.

Object storage is the name given to the new storage model that Ozone, that is also a storage engine

for Hadoop ecosystem. Within the same Hadoop cluster, it can co-exist with HDFS to offer file store

and object store capability. Similar to AWS S3 and Google Cloud storage, you can create object

storage for your Hadoop Cluster as well and it can store trillions of files on Ozone, and they can

access those files just as if they were stored on HDFS.

Ozone also supports the scalability and tiny file issues that HDFS has. Ozone can be easily integrated

into already existing Hadoop installations, and applications like Hive and Spark can run without

requiring any adjustments.

Apache has built an object storage system known as Ozone. It is designed to be used inside the

architecture in a manner similar to that of HDFS. Specifically, as a storage layer. Below image shows

Comparison between Object Storage and Block Storage (HDFS) in graphical form (Ozone).

https://www.hadoopexam.com/

 2

Block storage: Fragments the data into smaller chunks, which are subsequently stored

independently as blocks. The Storage Area Network (SAN) will position the data blocks in the

locations where they will be used most effectively. Each block is assigned a unique identification.

Because of this, data may be saved wherever it will be more easily accessible, rather than inside the

same system. The access to data in block storage does not depend on a single, centralised route.

Because of this, the information may be accessed very rapidly.

Storage of Objects: Files are fragmented into smaller parts and dispersed over various devices as

part of the object storage system, which has a flat structure. Volumes and containers are used for

object storage in place of traditional blocks. The data is stored in volumes, which are modular

storage containers that are completely self-contained. Every item included inside it is assigned a

distinct identification in addition to the information that details the data. The unique identifier in

block storage is made up of two IDs, as opposed to only one. One that tells you which bucket the

data is kept on and where it is stored.

And another one that specifies the location inside the bucket where the data is being kept. The

metadata may be tailored and specified to the user's specifications. It includes information such as

age, access permissions, and security. Object Storage offers excellent value for the money. You are

only responsible for paying for what you use. It is not difficult to scale up.

Large quantities of static and unstructured data are ideal candidates for this sort of storage. Once

they have been generated, objects cannot have their properties changed in any way, which is one of

the most significant drawbacks. It is required to create a whole new object if you want to make

changes to an existing one. Writing objects is a more time-consuming procedure than writing to

block storage, which is another reason why standard structured databases do not perform well with

object storage.

Apache Ozone is a distributed object store that is scalable, redundant, and optimised for the

demands associated with large data. Applications that make use of frameworks such as Apache

Spark, Apache YARN, and Apache Hive function natively on Ozone without requiring any changes.

This is in addition to Ozone's ability to scale to billions of objects of varied sizes. Ozone offers a

https://www.hadoopexam.com/

 3

Hadoop-compatible file system interface and has native support for the S3 application programming

interface. The CDP Private Cloud Base deployment is the common location where Ozone may be

found.

Ozone is made up of three essential components that are used for storing information: volumes,

buckets, and keys. Each key is a component of a bucket, and the buckets together make up a

volume. The creation of volumes is restricted to administrators only. Regular users are able to build

buckets in varying quantities, depending on the needs that they have. Within these buckets, Ozone

maintains data in the form of keys.

Ozone saves the accompanying data on DataNodes in chunks that are referred to as blocks. This

happens whenever a client submits a key. As a result, any key may open anywhere from one to

several different chests. Multiple blocks that are not connected to one another may coexist in the

same storage container inside of a DataNode.

HDFS is the de facto large data file system. It's easy to forget how scalable and reliable HDFS is. Our

customers operate clusters with thousands of nodes that serve thousands of concurrent clients.

HDFS operates best with huge files, tens to hundreds of megabytes. HDFS has a modest file capacity

and struggles with 400M files. HDFS-like storage that can handle billions of little files is in demand.

Ozone can handle tiny and big files. Ozone is an Object Store whereas HDFS is POSIX-like.

Ozone architecture

Ozone can be co-located with HDFS with single security and governance policies for easy data

exchange or migration and also offers seamless application portability. Ozone has a scale-out

architecture with minimal operational overheads. Ozone separates management of namespaces and

storage, helping it to scale effectively. The Ozone Manager (OM) manages the namespaces while the

Storage Container Manager (SCM) handles the containers.

The following diagram shows the components that form the basic architecture of Ozone:

https://www.hadoopexam.com/

 4

Hadoop Distributed Data Store: Ozone is built on a highly available, replicated block storage layer

called Hadoop Distributed Data Store (HDDS).

Blocks: Blocks are the basic unit of storage. In Ozone, each block is of 256 MB in size. A collection of

blocks forms a storage container. The SCM allocates blocks inside storage containers for the client to

store data.

Storage Containers: A storage container is a group of unrelated blocks managed together as a single

entity. A container exists in a DataNode and is the basic unit of replication, with a capacity of 2 GB to

16 GB.

The Storage Container Manager performs multiple critical functions for an Ozone cluster. SCM

manages the addition and removal of DataNodes, and allocates storage containers and blocks. SCM

also manages block collections, ensuring that the blocks maintain the required level of replication.

SCM allocates blocks to clients through OM for read and write operations. In addition, SCM executes

recovery actions when faced with DataNode or disk failures.

DataNodes: DataNodes contain storage containers comprising of data blocks. The SCM monitors

DataNodes through heartbeats.

Ozone Manager: The Ozone Manager (OM) is the metadata manager for Ozone. The OM manages

the following storage elements:

 The list of volumes for each user

 The list of buckets for each volume

 The list of keys for each bucket

The OM maintains the mappings between keys and their corresponding Block IDs. When a client

application requests for keys to perform read and write operations, the OM interacts with the SCM

for information about blocks relevant to the read and write operations, and provides this

information to the client. In addition, the OM also handles metadata operations from the clients.

The Ozone Manager (OM) is a highly available namespace manager for Ozone. OM manages the

metadata for volumes, buckets, and keys. OM maintains the mappings between keys and their

corresponding Block IDs. When a client application requests for keys to perform read and write

operations, OM interacts with SCM for information about blocks relevant to the read and write

operations, and provides this information to the client. In addition, OM also handles metadata

operations from the clients.

Pipelines: Pipelines determine the replication strategy for the blocks associated with a write

operation.

Recon Server: Recon is the management interface for Ozone. Recon provides a unified management

API for Ozone.

How Ozone manages read operations: The client requests the block locations corresponding to the

key it wants to read. The Ozone Manager (OM) returns the block locations if the client has the

required read privileges.

https://www.hadoopexam.com/

 5

The following steps explain how Ozone manages read operations:

1. The client requests OM for block locations corresponding to the key to read.

2. OM checks the ACLs to confirm whether the client has the required privileges, and returns

the block locations and the block token that allows the client to read data from the

DataNodes.

3. The client connects to the DataNode associated with the returned Block ID and reads the

data blocks.

How Ozone manages write operations: The client requests blocks from the Ozone Manager (OM) to

write a key. OM returns the Block ID and the corresponding DataNodes for the client to write data.

The following steps explain how Ozone manages write operations:

1. The client requests blocks from OM to write a key. The request includes the key, the pipeline

type, and the replication count.

2. OM finds the blocks that match the request from SCM and returns them to the client.

If security is enabled on the cluster, OM also provides a block token along with the block location to

the client. The client uses the block token to connect to the DataNodes and send the command to

write chunks of data.

1. The client connects to the DataNodes associated with the returned block information and

writes the data.

2. After writing the data, the client updates the block information on OM by sending a commit

request.

3. OM records the associated key information.

Notes

a. Keys in Ozone are not visible until OM commits the block information associated

with the keys. The client is responsible for sending the key-block information to OM

after it has written the blocks on the DNs via a commit request.

b. If OM fails to commit block information for keys after they have been written, for

example, client was unable to send the commit request OM because the write job

failed, the keys would not be visible but the data would remain on disk.

Tenets: Ozone's design followed these guidelines:

 Consistent: Consistency facilitates app development. Ozone is serializable.

 Simplicity: A basic architecture is simpler to understand and debug. We've kept Ozone's

architecture basic despite its scalability. Ozone scales well. Over 100 billion items may be

stored in a single cluster.

 Layered Architecture: Ozone is a layered file system for current storage systems. It isolates

namespace management from block and node management, allowing scaling on both axes.

 Pain-free recovery: HDFS can recover from cluster-wide power outage without losing data

or requiring costly recovery methods. Losses in racks and nodes are negligible. Ozone will

withstand failures similarly.

 Apache's Open Source: Apache Open Source is crucial to Ozone's success. The Apache

Hadoop community designs and develops Ozone.

 Hadoop interoperability: Ozone should work with current Apache Hadoop applications like

Hive, Spark, and MapReduce. Therefore, Ozone:

- Hadoop FSA (aka OzoneFS). Hive, Spark, etc. may utilise Ozone without modification.

https://www.hadoopexam.com/

 6

- Localization. Original HDFS/MapReduce allowed computation operations to be

scheduled on the same nodes as the data. Ozone supports application data localization.

- Deploy HDFS side-by-side. Ozone may share HDFS discs in an existing Hadoop cluster.

Ozone Concepts: Volumes, buckets, and Keys are the component parts that make up ozone.

Ozone is an extensible, fault-tolerant, and distributed object storage that is built on top of Hadoop.

In addition to being able to handle billions of items of varied sizes, Ozone is also capable of

performing well in containerized settings such as those provided by Kubernetes. When Ozone is

used, applications like as Apache Spark, Hive, and YARN function normally and do not need any

adjustments. It is quite simple to use Ozone due to the fact that it comes equipped with a Java client

library, support for the S3 protocol, and a command line interface.

- Volumes: Volumes are comparable to accounts in their function. Administrators are the

only people who can create new volumes or remove existing ones. The creation of a

volume for an organisation or team will normally be handled by an administrator.

- Buckets: A volume may have zero, one, or more buckets inside of it. Buckets in Ozone

function in a manner comparable to those in Amazon S3.

- Keys: are objects that are exclusive to a certain bucket and are analogous to S3 Objects

in their function. Any string may be used for a key name. The data that you store inside

these keys is denoted by values, and Ozone does not yet impose any kind of maximum

size restriction on key sizes.

Ozone is a redundant, distributed object store optimized for Big data workloads. The primary design

point of ozone is scalability, and it aims to scale to billions of objects. Ozone separates namespace

management and block space management; this helps ozone to scale much better. The namespace

is managed by a daemon called Ozone Manager (OM), and block space is managed by Storage

Container Manager (SCM). Ozone consists of volumes, buckets, and keys. A volume is similar to a

home directory in the ozone world. Only an administrator can create it. Volumes are used to store

buckets. Once a volume is created users can create as many buckets as needed. Ozone stores data as

keys which live inside these buckets. Ozone namespace is composed of many storage volumes.

Storage volumes are also used as the basis for storage accounting. The block diagram shows the core

components of Ozone.

https://www.hadoopexam.com/

 7

The Ozone Manager is the name space manager, Storage Container Manager manages the physical

and data layer and Recon is the management interface for Ozone.

Advanced Concepts

Any distributed system can be viewed from different perspectives. One way to look at Ozone is to

imagine it as Ozone Manager as a name space service built on top of HDDS, a distributed block store.

Another way to visualize Ozone is to look at the functional layers; we have a metadata data

https://www.hadoopexam.com/

 8

management layer, composed of Ozone Manager and Storage Container Manager. We have a data

storage layer, which is basically the data nodes and they are managed by SCM. The replication layer,

provided by Ratis is used to replicate metadata (OM and SCM) and also used for consistency when

data is modified at the data nodes. We have a management server called Recon, that talks to all

other components of Ozone and provides a unified management API and UX for Ozone.

We have a protocol bus that allows Ozone to be extended via other protocols. We currently only

have S3 protocol support built via Protocol bus. Protocol Bus provides a generic notion that you can

implement new file system or object store protocols that call into O3 Native protocol.

https://www.hadoopexam.com/
https://www.hadoopexam.com/Cloudera_Certification/CCA159/What_is_cloudera_certifications_CCA131_CCA175_CCA159_CCPDE575_Exam.html

 1

Contents
Chapter-3 Apache Hive ... 1

Overview ... 1

Hive Features .. 1

Hive Architecture .. 2

Benefits of using Apache Hive... 3

Problems with Hive ... 4

Facts about Apache Hive ... 4

FAQ for Apache Hive ... 4

Chapter-3 Apache Hive

Overview

 Apache Hive is a Hadoop-based data warehouse for searching and analysing massive Hadoop

datasets. Hadoop processes structured and semi-structured data.

 Initially, you had to construct sophisticated Map-Reduce tasks to use Hadoop as a Big Data

Processing engine, but now you can submit SQL queries. Hive targets SQL-savvy users.

 Hive uses HQL, a SQL-like language. HiveQL converts SQL-like queries to MapReduce jobs.

 Hive simplifies Hadoop. And you don’t need to learn java if you know ANSI SQL to work with

BigData.

 Your SQL query is transformed into a series of Map Reduce tasks by the Hive client, which

typically runs on your gateway/client node and sends them to a Hadoop cluster for execution.

 Hive arranges the Data into tables, which helps for providing an structure to HDFS data.

 Data analysis is performed using Hive, which is a Data Warehousing software that was created

on top of Hadoop. Additionally, Hive makes use of a language known as HiveQL (HQL), which

automatically converts queries that are similar to SQL into tasks for MapReduce.

Hive Features

 Before Apache Hive, there were several problems with Big Volume of data. Data size are keep

growing and making it tough to manage and the typical RDBMS failed to handle this volume.

 Most of the organizations attempted MapReduce to solve this issue. However, writing

MapReduce was another programming challenges, everybody has to learn Java and write

complex MapReduce jobs.

 Apache Hive helped a lot to overcome above problems.

 BigData Companies are now able to execute the following using Apache Hive:

https://www.hadoopexam.com/

 2

o Schema flexibility and evolution

o Tables can be portioned and bucketed

o Apache Hive tables are defined directly in the HDFS

o JDBC/ODBC drivers are available

 For ad hoc needs, Apache Hive spares developers from designing difficult Hadoop MapReduce

processes. So, hive offers data summary, analysis, and querying.

 Hive is scalable and very quick. It may be extended greatly. Because Apache Hive and SQL are so

similar, learning and using Hive Queries is fairly simple for SQL developers.

 By giving users a way to submit SQL queries via an interface, Hive lessens the complexity of

MapReduce. Therefore, with Apache Hive, business analysts may now experiment with big data

and provide insights.

 Additionally, it offers file access to a number of data storage, including HDFS and HBase. The fact

that we don't need to understand Java in order to use Apache Hive is its most significant feature.

Hive Architecture

Apache Hive has following major components:

1. Metastore:

a. It stores metadata for each of the tables like their schema and location.

b. Metastore stores the information about table partitions.

c. Driver connects to metastore to get the detail about various data sets distributed

over the cluster nodes.

d. Metastore is always a traditional RDBMS store like MySQL, Oracle RDBMS.

e. Hive metadata helps the driver to keep a track of the data and it is highly crucial.

2. Driver:

a. This is similar to JDBC driver which receives the HiveQL statements.

b. The driver starts the execution of the statement by creating sessions.

c. It monitors the life cycle and progress of the execution.

d. Driver stores the necessary metadata generated during the execution of a HiveQL

statement.

e. It also acts as a collection point of data or query result obtained after the Reduce

operation.

3. Compiler:

a. Every Hive SQL statement needs to be compiled before it performs the actual query

execution.

b. Compiler generates the query to an execution plan.

c. The execution plan contains the tasks.

d. And contains the steps needed to be performed by the MapReduce to get the

output as translated by the query.

e. The compiler in Hive converts the query to an Abstract Syntax Tree (AST).

f. First, check for compatibility and compile-time errors, then converts the AST to a

Directed Acyclic Graph (DAG).

4. Optimizer:

a. It performs various transformations on the execution plan to provide optimized

DAG.

https://www.hadoopexam.com/

 3

b. It aggregates the transformations together, such as converting a pipeline of joins to

a single join, for better performance.

c. The optimizer can also split the tasks, such as applying a transformation on data

before a reduce operation, to provide better performance.

5. Executor:

a. Once compilation and optimization complete, the executor executes the tasks.

b. Executor takes care of pipelining the tasks.

6. CLI, UI, and Thrift Server:

a. CLI (command-line interface) provides a user interface for an external user to

interact with Hive.

b. Thrift server in Hive allows external clients to interact with Hive over a network,

similar to the JDBC or ODBC protocols.

Benefits of using Apache Hive

 Hive makes it considerably simpler to do data analysis, queries, and summarization on large

amounts of data.

 Since Hive supports external tables, it is feasible to process data without actually storing it in

HDFS. This is made possible by the fact that Hive supports external tables.

 Apache Hive is an excellent choice for fulfilling the low-level interface requirement of Hadoop.

 It also enables the division of data at the table level to boost efficiency, and this feature is

supported.

 Hive is equipped with a rule-based optimizer with the purpose of improving logical plan

performance.

 It is expandable, scalable, and has a user-friendly interface.

 Using HiveQL does not need any prior knowledge of programming languages; all that is required

is a fundamental understanding of SQL queries.

 Using Hive, we can simplify the process of processing structured data in Hadoop.

 Because it is so close to SQL, querying in Hive is a pretty straightforward process.

 Through the use of Hive, we can also conduct ad hoc queries for the data analysis.

https://www.hadoopexam.com/

 4

Problems with Hive

 There is no provision for real-time queries or changes at the row level in Apache Hive.

 Additionally, Hive delivers a latency that is suitable for interactive data browsing.

 It is not beneficial for the processing of online transactions.

 In most cases, Apache Hive queries are characterised by a fairly long latency.

Facts about Apache Hive

 The Apache Hive is a Structural Framework on Hadoop.

 Using Hive, you can query massive datasets that are stored in remote storage might be helpful.

 Apache Hive is a kind of distributed data warehouse.

 HiveQL is a query language that is similar to SQL (HQL).

 HiveQL is a declarative programming language similar to SQL.

 The Hive table structure is analogous to the tables in a relational database.

 Using the Hive-QL query language, several users may concurrently query the data.

 Hive, on the other hand, enables the building of bespoke MapReduce framework processes that

may be used to do more in-depth data analysis.

 It is simple to extract, convert, and load (ETL) data using Apache Hive from HDFS.

 Hive provides the framework for a broad range of data types.

 Hive makes it possible to access files that are stored in HDFS.

 In addition to that, Apache Hive enables the conversion of a wide number of formats.

 However, Hive is not intended for use in the processing of online transactions (OLTP). Despite

this, we are able to put it to use for online analytical processing (OLAP).

 Apache Hive does not support updates or deletes, but it does support overwriting and acquiring

data.

 Hive does not support the use of subqueries, while writing this study material.

FAQ for Apache Hive

Question-1. What is Hive Metastore?

Answer: Hive metastore is a database that stores metadata about your Hive tables (eg. Table name,

column names and types, table location, storage handler being used, number of buckets in the table,

sorting columns if any, partition columns if any, etc.). When you create a table, this metastore gets

updated with the information related to the new table which gets queried when you issue queries

on that table.

Question-2: Wherever (Different Directory) I run hive query, it creates new metastore_db, please

explain the reason for it?

Answer: Whenever you run the hive in embedded mode, it creates the local metastore. And before

creating the metastore it looks whether metastore already exist or not. This property is defined in

configuration file hive-site.xml. Property is “javax.jdo.option.ConnectionURL” with default value

“jdbc:derby:;databaseName=metastore_db;create=true”. So to change the behavior change the

location to absolute path, so metastore will be used from that location.

https://www.hadoopexam.com/

 5

Question-3: Is it possible to use same metastore by multiple users, in case of embedded hive?

Answer: No, it is not possible to use metastore in sharing mode. It is recommended to use

standalone “real” database like MySQL or PostGresSQL.

Question-4: Is multiline comment supported in Hive Script ?

Answer: No.

Question-5: If you run hive as a server, what are the available mechanism for connecting it from

application?

Answer: There are following ways by which you can connect with the Hive Server:

1. Thrift Client: Using thrift you can call hive commands from a various programming

a. languages e.g. C++, Java, PHP, Python and Ruby.

2. JDBC Driver : It supports the Type 4 (pure Java) JDBC Driver

3. ODBC Driver: It supports ODBC protocol.

Question-6: What is SerDe in Apache Hive?

Answer: A SerDe is a short name for a Serializer Deserializer. Hive uses SerDe (and FileFormat) to

read and write data from tables. An important concept behind Hive is that it DOES NOT own the

Hadoop File System (HDFS) format that data is stored in. Users are able to write files to HDFS with

whatever tools/mechanism takes their fancy("CREATE EXTERNAL TABLE" or "LOAD DATA INPATH,")

and use Hive to correctly "parse" that file format in a way that can be used by Hive. A SerDe is a

powerful (and customizable) mechanism that Hive uses to "parse" data stored in HDFS to be used by

Hive.

Question-7: Which classes are used by the Hive to Read and Write HDFS Files

Answer: Following classes are used by Hive to read and write HDFS files

 TextInputFormat/HiveIgnoreKeyTextOutputFormat: These 2 classes read/write data in

plain text file format.

 SequenceFileInputFormat/SequenceFileOutputFormat: These 2 classes read/write data

in hadoop SequenceFile format.

Question-8. Give examples of the SerDe classes which hive uses to Serialize and Desterilize data ?

Answer: Hive currently use these SerDe classes to serialize and deserialize data:

 MetadataTypedColumnsetSerDe: This SerDe is used to read/write delimited records like

CSV, tab-separated control-A separated records (quote is not supported yet.)

 ThriftSerDe: This SerDe is used to read/write thrift serialized objects. The class file for

the Thrift object must be loaded first.

 DynamicSerDe: This SerDe also read/write thrift serialized objects, but it understands

thrift DDL so the schema of the object can be provided at runtime. Also it supports a lot

of different protocols, including TBinaryProtocol, TJSONProtocol, TCTLSeparatedProtocol

(which writes data in delimited records).

https://www.hadoopexam.com/

 6

Question-9. Can you use Apache Hive for OLTP systems?

Answer: No, it is not suitable for OLTP system because it does not offer insert and update at the row

level.

Question-10. Why does Apache Hive not store metadata information in HDFS and instead it needs

RDBMS?

Answer: Hive stores metadata information in the metastore which must be an RDBMS, so that it can

achieve low latency. Since, HDFS read/write operations are time-consuming processes.

https://www.hadoopexam.com/
https://www.hadoopexam.com/Cloudera_Certification/CCA159/What_is_cloudera_certifications_CCA131_CCA175_CCA159_CCPDE575_Exam.html

 1

Contents
Chapter-4: Apache Hue ... 1

Overview ... 1

Hue Design and Architecture .. 3

Administrator .. 3

Major Functionalities of Hue in CDP ... 4

Hive vs Hue .. 6

Chapter-4: Apache Hue

Overview

Hue is an interactive query editor that runs in a web browser and gives users the ability to interact

with data warehouses. This is one of the most widely used Query Editor and HadoopExam will also

use this heavily in their training programs specially on HDFS, Sqoop, Hive and Impala. Through the

use of Hue, you can provide your SQL developers access to the power of business intelligence (BI)

and analytics. Hue is an analytics workbench that is open source and was developed for easy and

quick data discovery, as well as intelligent query support and seamless collaboration. Create a bridge

between information technology and the company in order to provide reliable self-service analytics.

For illustration purposes, the following image demonstrates a graphical representation of the results

of an Impala SQL query that may be generated with Hue:

https://www.hadoopexam.com/

 2

Using Hue, you can do following activities

1. Hive & Impala: Explore your various databases.

2. Schema Tables: Proceed to the specific tables afterward.

3. Files: Navigate through the HDFS directories and the cloud storage.

4. Table Detail: Find the indexes and tables stored in HBase or Kudu.

5. Documents: Find documents

The primary section of the Hue UI has a comprehensive collection of tools, which include the

following:

- Editing environments: that are flexible and enable the creation of a broad range of scripts.

- Dashboards: that may be constructed "on the fly" by dragging and dropping objects into the

centre panel of the Hue user interface. There is no need for programming at all. After that,

you may study your statistics by using your individualised dashboard.

- Schedulers: The tool that allows you to construct schedulers by dragging and dropping,

similar to how dashboards are created. Using this feature, you will be able to construct

individualised processes and set them to execute on a predetermined schedule at certain

intervals. A monitoring interface will provide the current status of the tasks, as well as logs,

and will allow you to pause or cancel them.

Assistant Panel: The assistant panel you can find to the right of the main panel, and it offers tips and

guidance pertinent to the application that is now being used in the main panel. For instance, in the

picture that can be seen above, there is a middle panel that contains Impala SQL tips that may assist

in the construction of queries.

https://www.hadoopexam.com/

 3

Hue Design and Architecture

In general, each Hue server is capable of supporting roughly 25 concurrent users, however this

number might vary based on the tasks being carried out by the users. It is not the number of users

that causes the majority of scaling problems; rather, it is the actions that users execute that are

resource expensive. For instance, downloading a significant amount of query results may have an

effect on the availability of resources for other users who are using the same instance of Hue at the

same time as the download process. During such period, the users could notice that performance is

slowing down. Another typical factor that might bring about observable shifts in performance are

sluggish RPC calls made between Hue and another service. When this occurs, the queries that are

sent may give the impression that they are "hanging" all of a sudden.

As a general rule, two Hue servers may support up to the following:

- 100 unique users per week

- At peak periods, there are 50 users per hour who can execute up to 100 queries.

- In a typical configuration, there are two Hue servers.

Administrator

- Install a load balancer on the path leading up to Hue.

- Make use of a database of production-quality. Hue Custom Databases may be seen here for

further details.

- Make sure that other services, such Impala, Hive, and Oozie, are in good health and are not

being negatively affected by the lack of resources. If any of these services become

unresponsive, it will have a negative impact on Hue's performance.

- It is a good idea to think about shifting workloads that are governed by service-level

agreements (SLAs) or are regarded as "noisy neighbours" to their own computing cluster.

https://www.hadoopexam.com/

 4

Workloads that use the bulk of the available resources and result in performance concerns

are referred to as "noisy neighbours." Look into Virtual Private Clusters and Cloudera SDX if

you want to learn more about how to keep your computation and storage functions

separate.

- Set a maximum for the number of rows that will be returned in response to queries.

- Setting a value for the download row limit configuration variable of the Hue Beeswax

application is one approach to restrict the number of rows that are retrieved by the

application. This property may be set in the Hue Service Advanced Configuration Snippet

(Safety Valve), which is located in the Cloudera Manager configuration file for the hue safety

valve.ini property.

Major Functionalities of Hue in CDP

Hue is a web-based interface for using Apache Hadoop to do data analysis. It is possible to install it

on any computer running any version of Hadoop.

Hue is a collection of apps that allows users to have web-based access to CDH components and

functions as a platform for the development of bespoke applications.

The diagram that follows provides an illustration of how Hue works. The Hue Server web application

functions as a "container" that bridges the gap between your CDH installation and the browser. It

interfaces with a variety of servers that interface with CDH components and hosts the Hue apps.

Hue, which stands for Hadoop User Experience, is a graphical user interface that is open-source,

web-based, and designed for use with Apache Hadoop and Cloudera CDP. A flexible user interface is

created by Hue, which brings together a number of separate Hadoop ecosystem projects. Cloudera

CDP now includes additional customization options that are exclusive to the Hue. Hue functions as a

https://www.hadoopexam.com/

 5

front-end for apps that operate on your cluster. This makes it possible for you to engage with

applications using an interface that is maybe more intuitive or well-known to you. It is no longer

necessary to log in to the cluster in order to execute scripts interactively using each application's

corresponding shell since Hue's apps, such as the Hive and Pig editors, eliminate this need. It's

possible that after a cluster is up and running, you'll communicate only with its apps using Hue or a

comparable interface.

Hue supported features:

- Amazon S3 and Hadoop File System (HDFS) Browser

- With the appropriate permissions, you can browse and move data between the ephemeral

HDFS storage and S3 buckets belonging to your account.

- Hive—Run interactive queries on your data. This is also a useful way to prototype

programmatic or batched querying.

- Pig—Run scripts on your data or issue interactive commands.

- Oozie—Create and monitor Oozie workflows.

- Metastore Manager—View and manipulate the contents of the Hive metastore

(import/create, drop, and so on).

- Job browser—See the status of your submitted Hadoop jobs.

- User management—Manage Hue user accounts and integrate LDAP users with Hue.

- To use the Hue Notebook for Spark, you must install Hue with Livy and Spark.

- Quickly identify relevant data: For analytics that are both quicker and more reliable, it is

possible to search and find relevant tables, views, and columns across all databases,

including cloud-native object stores, with ease. Ensure that data can be trusted instantly by

incorporating data stewardship into the system and allowing end users to tag data for

further classification and organising that is project-focused.

- Keep your changes safe and iterate across teams: Through seamless and safe collaboration

and sharing, silos of analytics and business intelligence may be eliminated. You can

safeguard even the most sensitive data by saving searches and result sets for later use,

sharing them with other users or departments, and explicitly setting access rights for those

saved items.

- Intelligent inquiry design and help: The only SQL editor with usage-enriched intelligence to

safeguard against malicious queries and make SQL users more productive. You may explore

and do analytics in an efficient and iterative manner by dragging and dropping tables and

columns, rapidly designing queries using autocomplete pop-ups, and receiving query

suggestions based on use and best practises.

- Native integration with the cloud: Browse through all databases, run queries on them, and

store the results in both on-premises and cloud-based systems. Apache Hive is used for data

preparation, Apache Solr is used for free-text analytics, and Apache Impala is used for high-

performance SQL analytics. Hue interfaces with the full of Cloudera's platform, including

storage engines, Apache Kudu and Amazon S3 object storage.

- Include data scientists and analysts in the analytics process: Cloudera's platform also

enables self-service data science with the Cloudera Data Science Workbench, which can be

carried out over the same shared data by users who are more familiar with the programming

languages R, Python, or Scala. In addition, the platform is compatible with all of the

industry's leading business intelligence (BI) and visualisation tools, such as Tableau, Qlik,

Zoomdata, and many others. This allows businesses to keep utilising the tools they already

rely on while taking advantage of the scalability and flexibility offered by Cloudera.

https://www.hadoopexam.com/

 6

Hive vs Hue

Hive is a collection of keys and subkeys that are accompanied by a series of supporting files that

store backups of the data. To put it simply, the hive is the area where information about the

Windows registry is stored. Each hive has a tree, and each tree has a unique key. This key acts as the

tree's root, which is the point at which the tree begins or the highest point in the hierarchy inside

the register. There are registry keys, registry subkeys, and registry values included inside the registry.

The prefix "HKEY" is included at the beginning of every key that belongs to a hive. When all of the

other entries in the registry are minimised, a group of keys known as hives will show up on the left-

hand side of the screen in the form of folders. One is not possible to establish a Hive, remove one, or

rename it. During the early phases of development, Facebook was responsible for launching the

hive; however, the Apache Software Foundation eventually took over management of the project.

Both a web user interface that offers a variety of services and a Hadoop framework, Hue is referred

to simply as Hue. Hue has a web user interface for browsing HDFS files, in addition to providing the

file path. The Job browser, the Hadoop shell, User administrative rights, the Impala editor, the HDFS

file browser, the Pig editor, the Hive editor, the Ozzie web interface, and Hadoop API Access are the

most essential aspects of Hue. This online user interface style makes it easier for users to browse

among the files, in a manner similar to how a typical Windows user would navigate to his or her files

on their local PC. Users are able to avoid making syntax mistakes when conducting queries with the

help of Hue, which is a convenient tool since it gives a web user interface to programming languages.

Hue requires the use of a web browser in order to be installed or configured.

https://www.hadoopexam.com/
https://www.hadoopexam.com/Cloudera_Certification/CCA159/What_is_cloudera_certifications_CCA131_CCA175_CCA159_CCPDE575_Exam.html

 1

Contents
Chapter-5: Cloudera CDP and YARN ... 1

Overview ... 1

CDP Compute .. 1

YARN architecture and workflow .. 1

YARN Features... 2

YARN and Cluster Basics (Master and Worker Nodes) ... 3

YARN Configuration File .. 4

YARN Requires a Global View ... 4

YARN Containers ... 5

YARN Application Processing on Cluster ... 5

MapReduce Fundamental Concepts ... 8

YARN Integrated across the CDP platform .. 9

YARN Scheduler... 10

YARN Capacity Scheduler Overview .. 11

YARN Web User Interface ... 11

Resource Scheduling and Management ... 13

Chapter-5: Cloudera CDP and YARN

Overview

 Apache YARN is the processing layer or execution engine for managing distributed

applications that run on multiple machines in a network.

 YARN is also known as MRv2.

 YARN supports MapReduce and legacy (MRv1) MapReduce jobs can run in YARN.

 YARN architecture splits the two primary responsibilities of the JobTracker into

o Resource management and

o Job scheduling/monitoring

 YARN will have two separate daemons for each of the above responsibility.

o A global ResourceManager for resources management and

o Per-application ApplicationMasters (Assume, each one of your Impala Query or Hive

Query or a MapReduce Job is a separate application and for each YARN will create

an Application Master).

 YARN enables the use of a variety of data processing engines for batch, interactive, and real-

time stream processing of data stored in HDFS or cloud storage such as S3 and ADLS.

https://www.hadoopexam.com/

 2

 You may run various processing frameworks for distinct use-cases on the same Hadoop

cluster with the help of YARN, for example, Hive for SQL applications, Spark for in-memory

applications, and Storm for streaming applications.

 YARN is part of Cloudera Runtime.

CDP Compute

 Apache YARN is resource management tool for CDP or Hadoop framework.

 Apache YARN manages resources for the applications running on your cluster by allocating

resources through scheduling, limiting CPU usage, and partitioning clusters.

 You can use Access Control Lists to use YARN with a secure cluster.

 By using Apache YARN, you can optimize the use of vcores and memory.

YARN architecture and workflow

- YARN has three main components:

o ResourceManager: Allocates cluster resources using a Scheduler and

ApplicationManager.

o ApplicationMaster: Manages the life-cycle of a job by directing the NodeManager to

create or destroy a container for a job. There is only one ApplicationMaster for a job.

o NodeManager: Manages jobs or workflow in a specific node by creating and

destroying containers in a cluster node.

YARN Features

- YARN enables you to manage resources and schedule jobs in Hadoop and has the following

features.

https://www.hadoopexam.com/

 3

- Multi-tenancy:

o You can use multiple open-source and proprietary data access engines for batch,

interactive, and real-time access to the same dataset. Multi-tenant data processing

improves an enterprise’s return on its Hadoop investments.

o YARN's dynamic resource management allows many engines and workloads to use

the same cluster resources. Make your data available to users throughout your

whole business environment via batch, interactive, sophisticated, or real-time

processing, all inside the same platform, to get the most out of your Hadoop

platform.

- Cluster utilization:

o You can dynamically allocate cluster resources to improve resource utilization.

o Fine-grained settings improve cluster utilisation, allowing you to implement

workload SLAs for priority workloads and group-based rules throughout the

enterprise. Process more data in more ways while keeping your most vital tasks

running smoothly.

- Multiple resource types: You can use multiple resource types such as memory, CPU, and

GPU.

- Scalability:

o Significantly improved data center processing power. YARN’s ResourceManager

focuses exclusively on scheduling and keeps pace as clusters expand to thousands of

nodes managing petabytes of data.

o YARN is intended to manage scheduling for Hadoop's vast scale, allowing you to add

new and bigger workloads while staying on the same platform.

- Compatibility: MapReduce applications developed for Hadoop 1 runs on YARN without any

disruption to existing processes. YARN maintains API compatibility with the previous stable

release of Hadoop.

YARN and Cluster Basics (Master and Worker Nodes)

- A host, which is also called a node, in YARN terminology. A cluster is two or more hosts

connected by a high-speed local network.

- In Hadoop, there are two types of hosts in the cluster.

https://www.hadoopexam.com/

 4

- A master host serves as the point of communication for a client programme. The other

computers in the cluster, known as worker hosts, get their assignments from the cluster's

master host.

- In a YARN cluster, there are two types of hosts:

o The ResourceManager is the master daemon that communicates with the client,

tracks resources on the cluster, and orchestrates work by assigning tasks to

NodeManagers.

o A NodeManager is a worker daemon that launches and tracks processes spawned

on worker hosts.

https://www.hadoopexam.com/

 5

YARN Configuration File

- The YARN configuration file is an XML file that contains properties.

- This file is placed in a well-known location on each host in the cluster and is used to

configure the ResourceManager and NodeManager.

- By default, this file is named yarn-site.xml.

YARN Requires a Global View

- YARN currently defines two resources

o vcores

o and memory.

- Each NodeManager tracks its own local resources and communicates its resource

configuration to the ResourceManager, which keeps a running total of the cluster’s available

resources.

- By keeping track of the total, the ResourceManager knows how to allocate resources as they

are requested.

- Vcore has a special meaning in YARN. You can think of it simply as a “usage share of a CPU

core.”

- If you expect your tasks to be less CPU-intensive (sometimes called I/O-intensive), you can

set the ratio of vcores to physical cores higher than 1 to maximize your use of hardware

resources.)

YARN Containers

- Containers are an important YARN concept.

- You can think of a container as a request to hold resources on the YARN cluster.

- Currently, a container hold request consists of vcore and memory, as shown in below

- Container as a hold (left), and container as a running process (right).

- Once a hold has been granted on a host, the NodeManager launches a process called a task.

- The right side of Figure shows the task running as a process inside a container.

https://www.hadoopexam.com/

 6

YARN Application Processing on Cluster

- An application is a YARN client program that is made up of one or more tasks.

- For each running application, a special piece of code called an ApplicationMaster helps

coordinate tasks on the YARN cluster.

- The ApplicationMaster is the first process run after the application starts.

- An application running tasks on a YARN cluster consists of the following steps:

- Step-1: The application starts and talks to the ResourceManager for the cluster, Application

starting up before tasks are assigned to the cluster

Step-2: The ResourceManager makes a single container request on behalf of the application and

allocated container on a cluster.

https://www.hadoopexam.com/

 7

Step-3: The ApplicationMaster starts running within that container, Application + ApplicationMaster

running in the container on the cluster.

Step-4: The ApplicationMaster requests subsequent containers from the ResourceManager that are

allocated to run tasks for the application. Those tasks do most of the status communication with the

https://www.hadoopexam.com/

 8

ApplicationMaster allocated in Step 3), as shown below Application + ApplicationMaster + task

running in multiple containers running on the cluster.

Step-5: Once all tasks are finished, the ApplicationMaster exits. The last container is de-allocated

from the cluster.

Step-6: The application client exits. (The ApplicationMaster launched in a container is more

specifically called a managed AM. Unmanaged ApplicationMasters run outside of YARN’s control.

Llama is an example of an unmanaged AM.)

MapReduce Fundamental Concepts

- In the MapReduce paradigm, an application consists of Map tasks and Reduce tasks. Map

tasks and Reduce tasks align very cleanly with YARN tasks.

https://www.hadoopexam.com/

 9

- Below image, illustrates how the map tasks and the reduce tasks map cleanly to the YARN

concept of tasks running in a cluster.

- In a MapReduce application, there are multiple map tasks, each running in a container on a

worker host somewhere in the cluster. Similarly, there are multiple reduce tasks, also each

running in a container on a worker host.

- Simultaneously on the YARN side, the ResourceManager, NodeManager, and

ApplicationMaster work together to manage the cluster’s resources and ensure that the

tasks, as well as the corresponding application, finish cleanly.

https://www.hadoopexam.com/

 10

YARN Integrated across the CDP platform

 A CDP cluster is made up of two or more hosts connected by an internal high-speed

network.

 Master hosts are a small number of hosts reserved to control the rest of the cluster.

Worker hosts are the non-master hosts in the cluster.

 In a cluster with YARN running, the master process is called the ResourceManager and

the worker processes are called NodeManagers.

 The configuration file for YARN is named yarn-site.xml. There is a copy on each host in

the cluster. It is required by the ResourceManager and NodeManager to run properly.

YARN keeps track of two resources on the cluster, vcores and memory. The

NodeManager on each host keeps track of the local host’s resources, and the

ResourceManager keeps track of the cluster’s total.

 A container in YARN holds resources on the cluster. YARN determines where there is

room on a host in the cluster for the size of the hold for the container. Once the

container is allocated, those resources are usable by the container.

 An application in YARN comprises three parts:

 The application client, which is how a program is run on the cluster.

 An ApplicationMaster which provides YARN with the ability to perform allocation on

behalf of the application.

 One or more tasks that do the actual work (runs in a process) in the container allocated

by YARN.

 A MapReduce application consists of map tasks and reduces tasks.

 A MapReduce application running in a YARN cluster looks very much like the MapReduce

application paradigm, but with the addition of an ApplicationMaster as a YARN

requirement.

 Cloudera's platform is built on core Hadoop, which includes HDFS, MapReduce, and

YARN.

 All platform components have access to the same HDFS data and take part in shared

resource management through YARN.

 Hadoop, as part of Cloudera's platform, also benefits from straightforward deployment

and administration (through Cloudera Manager) as well as shared compliance-ready

security and governance.

https://www.hadoopexam.com/

 11

YARN Scheduler

- A scheduler determines which jobs run, where and when they run, and the resources

allocated to the jobs.

- The YARN (MRv2) and MapReduce (MRv1) computation frameworks support the following

schedulers:

o FIFO - Allocates resources based on arrival time.

o Fair - Allocates resources to weighted pools, with fair sharing within each pool.

When configuring the scheduling policy of a pool, Domain Resource Fairness (DRF) is

a type of fair scheduler.

o Capacity - Allocates resources to pools, with FIFO scheduling within each pool.

- However, Cloudera CDP only supports the Capacity Scheduler.

YARN Capacity Scheduler Overview

- The CapacityScheduler is designed to run Hadoop applications as a shared, multi-tenant

cluster in an operator-friendly manner while maximizing the throughput and the utilization

of the cluster.

- Traditionally each organization has it own private set of compute resources that have

sufficient capacity to meet the organization’s SLA under peak or near-peak conditions.

- This generally leads to poor average utilization and overhead of managing multiple

independent clusters, one per each organization.

- Sharing clusters between organizations is a cost-effective manner of running large Hadoop

installations since this allows them to reap benefits of economies of scale without creating

private clusters. However, organizations are concerned about sharing a cluster because they

are worried about others using the resources that are critical for their SLAs.

- The CapacityScheduler is designed to allow sharing a large cluster while giving each

organization capacity guarantees.

- The central idea is that the available resources in the Hadoop cluster are shared among

multiple organizations who collectively fund the cluster based on their computing needs.

https://www.hadoopexam.com/

 12

- There is an added benefit that an organization can access any excess capacity not being used

by others. This provides elasticity for the organizations in a cost-effective manner.

- Sharing clusters across organizations necessitates strong support for multi-tenancy since

each organization must be guaranteed capacity and safe-guards to ensure the shared cluster

is impervious to single rogue application or user or sets thereof.

- The CapacityScheduler provides a stringent set of limits to ensure that a single application or

user or queue cannot consume disproportionate number of resources in the cluster. Also,

the CapacityScheduler provides limits on initialized and pending applications from a single

user and queue to ensure fairness and stability of the cluster.

- The primary abstraction provided by the CapacityScheduler is the concept of queues. These

queues are typically setup by administrators to reflect the economics of the shared cluster.

- To provide further control and predictability on sharing of resources, the CapacityScheduler

supports hierarchical queues to ensure resources are shared among the sub-queues of an

organization before other queues are allowed to use free resources, thereby providing

affinity for sharing free resources among applications of a given organization.

YARN Web User Interface

- You can use YARN Web interface to monitor clusters, queues, applications, services, and

flow activities.

- Cluster Overview:

o When you open a Cluster Overview page, it should look like as below.

https://www.hadoopexam.com/

 13

- And provides the below information

- Cluster Resource Usage by Applications:

o Displays the percentage of cluster resources in use by applications and the

percentage available for usage.

- Cluster Resource Usage by Leaf Queues:

o Displays the percentage of cluster resources in use by leaf queues and the

percentage available for usage.

- Finished Apps From All Users:

o Displays the number of completed, killed, and failed applications.

- Monitor Running Apps:

o Displays the number of pending and running applications.

- memory-mb – Usages:

o Displays the amount of used and available memory.

- vcores – Usages:

o Displays the number of used and available virtual cores.

- Monitor Node Managers:

o Displays the status of the Node Managers under the following categories:

 Active

 Unhealthy

 Decommissioning

https://www.hadoopexam.com/

 14

 Decommissioned

Resource Scheduling and Management

 You can manage resources for the applications running on your cluster by allocating

resources through scheduling, limiting CPU usage by configuring cgroups, and

partitioning the cluster into subclusters using node labels, and launching applications on

Docker containers.

 The CapacityScheduler is responsible for scheduling. The CapacityScheduler is used to

run Hadoop applications as a shared, multi-tenant cluster in an operator-friendly

manner while maximizing the throughput and the utilization of the cluster.

 The ResourceCalculator is part of the YARN CapacityScheduler. If you have only one type

of resource, typically a CPU virtual core (vcore), use the DefaultResourceCalculator. If

you have multiple resource types, use the DominantResourceCalculator.

 YARN resource allocation of multiple resource-types: You can manage your cluster

capacity using the Capacity Scheduler in YARN. You can use the Capacity Scheduler's

DefaultResourceCalculator or the DominantResourceCalculator to allocate available

resources.

 Hierarchical queue characteristics: You must consider the various characteristics of the

Capacity Scheduler hierarchical queues before setting them up.

 Scheduling among queues: Hierarchical queues ensure that guaranteed resources are

first shared among the sub-queues of an organization before any remaining free

resources are shared with queues belonging to other organizations. This enables each

organization to have control over the utilization of its guaranteed resources.

 Application reservations: For a resource-intensive application, the Capacity Scheduler

creates a reservation on a cluster node if the node's free capacity can meet the

particular application's requirements. This ensures that the resources are utilized only by

that particular application until the application reservation is fulfilled.

 Resource distribution workflow: During scheduling, queues at any level in the hierarchy

are sorted in the order of their current used capacity, and the available resources are

distributed among them starting with queues that are currently the most under-served.

 Use CPU scheduling: Cgroups with CPU scheduling helps you effectively manage mixed

workloads.

 Use GPU scheduling: On your cluster, you can configure GPU scheduling and isolation.

Currently only Nvidia GPUs are supported in YARN. You can use Cloudera Manager to

configure GPU scheduling on your cluster.

 Use FPGA scheduling: You can use FPGA as a resource type.

 Limit CPU usage with Cgroups: You can use cgroups to limit CPU usage in a Hadoop

Cluster.

 Partition a cluster using node labels: You can use Node labels to partition a cluster into

sub-clusters so that jobs run on nodes with specific characteristics.

https://www.hadoopexam.com/

 15

https://www.hadoopexam.com/
https://www.hadoopexam.com/Cloudera_Certification/CCA159/What_is_cloudera_certifications_CCA131_CCA175_CCA159_CCPDE575_Exam.html

 1

Chpater-6: Apache Spark

Overview

Apache Spark is a broad framework for distributed computing that delivers excellent performance

for both batch and interactive processing. It comprises of the Spark core as well as numerous

projects that are connected to it and offers application programming interfaces (APIs) for Java,

Python, and Scala.

You have the option of using an interactive shell or submitting an application to execute Spark

applications locally or distributed over a cluster. Both of these options are available to you. During

the data exploration phase as well as for ad hoc analyses, it is usual practise to run Spark

applications in an interactive mode.

Spark needs a cluster manager in order to successfully execute applications that are deployed over a

cluster. The YARN cluster manager is the only one that Cloudera supports. The YARN

ResourceManager and NodeManager roles are responsible for managing Spark application processes

while they are being executed on YARN.

Apache Spark is a unified computing engine and a suite of libraries for parallel data processing on

computer clusters. Spark has become the tool of choice for any software developer or data scientist

that is interested in big data. Spark is capable of running on anything from a laptop to a cluster of

thousands of servers, and it offers support for a number of widely used programming languages,

including Python, Java, Scala, and R. It also includes libraries that can be used for a variety of tasks,

including SQL, streaming, and machine learning. Because of this, it is a simple system to begin with

and can easily be expanded to handle massive amounts of data or an extremely vast scale.

An easy-to-understand example of all that Spark has to offer an end user is shown here.

https://www.hadoopexam.com/

 2

Python, Java, Scala, R, and SQL can utilise Spark. Spark is built in Scala and runs on the Java Virtual

Machine (JVM). To run Spark on a laptop or cluster, you require Java 6 or newer. You'll need a

Python interpreter to access the API (version 2.6 or newer). You'll need R if you want to utilise it.

Fundamentals of Apache Spark

Unified:

Spark aims to provide a single platform for creating large data applications. Unified means... Spark

supports a broad variety of data analytics operations, from basic data loading and SQL queries to

machine learning and streaming computation, using the same computational engine and APIs. Real-

world data analytics jobs, whether interactive analytics in a Jupyter notebook or conventional

software development, integrate several processing kinds and libraries. Spark's cohesive nature

makes writing simpler and faster. Spark offers consistent, composable APIs that may be used to

create an application from smaller components or existing libraries, and makes it simple to develop

your own analytics libraries on top.

Composable APIs aren't enough. Spark's APIs are meant to optimise user programmes' libraries and

functions for maximum performance. If you load data using SQL and subsequently analyse a machine

learning model using Spark's ML library, the engine may merge both stages into one scan. Spark is a

great platform for interactive and production applications because to its broad APIs and high-

performance execution.

Spark's emphasis on a single platform mirrors previous software unified platform.

Data scientists use uniform libraries (e.g., Python or R) when modelling, while web developers use

united frameworks like Node.js or Django. Before Spark, no open-source system provided a single

https://www.hadoopexam.com/

 3

engine for parallel data processing, therefore users had to piece together an application from

disparate APIs and platforms. Spark rapidly became the industry standard.

Spark's built-in APIs have grown to support new workloads. Developers have also refined the

project's unifying engine. This book will concentrate on Spark 2.0's "structured APIs" (DataFrames,

Datasets, and SQL) to optimise user applications.

Computing Engine:

Spark is a computational engine that aims towards unification. Spark merely loads data from storage

systems and performs computations, not permanent storage. Spark may be utilised with Azure

Storage, Amazon S3, Apache Hadoop, Apache Cassandra, and Apache Kafka. Spark neither saves nor

prioritises long-term data. Most data is already stored in several systems. Spark performs

calculations on data wherever it exists since moving it is costly. Spark tries to make user-facing APIs

seem comparable so apps don't have to worry about where their data resides. Spark focuses on

computing, unlike Apache Hadoop.

Hadoop's storage technology (the Hadoop file system) and computation system (MapReduce) were

tightly interwoven. This option makes it difficult to operate one system without the other or create

apps that access data elsewhere. Spark operates well on Hadoop storage, but it's also utilised in

contexts where Hadoop design doesn't make sense, such as the public cloud (where storage may be

rented separately from compute) or streaming applications.

Libraries:

Spark's libraries leverage on its unified engine architecture to offer a single API for data analysis

operations. Spark supports both engine-bundled libraries and third-party open source libraries.

Today, Spark's standard libraries form the majority of the open source project; the Spark core engine

has evolved little since its inception, but the libraries have developed to give greater capability.

Spark comprises SQL and structured data (Spark SQL), machine learning (MLlib), stream processing

(Spark Streaming and Structured Streaming), and graph analytics (GraphX). There are hundreds of

free source external libraries, from storage interfaces to machine learning techniques. spark-

packages.org lists external libraries.

Spark Architecture

When you think of a "computer," you probably picture a desktop device. This computer is great for

movies and spreadsheets. As many users know, your computer can't do everything. Data processing

is difficult. Single machines can't process large volumes of data (or the user may not have time to

wait for the computation to finish).

A cluster combines the resources of multiple computers to utilise them as one. A set of machines

isn't powerful without a framework to coordinate work. Spark manages and coordinates data tasks

across a cluster of computers.

Spark's cluster of computers will be controlled by Spark's Standalone cluster manager, YARN, or

Mesos. The cluster administrators then provide Spark applications resources so we may finish our

job.

https://www.hadoopexam.com/

 4

Spark Applications

The components that make up a Spark Application are referred to as the "driver process" and the

"executor processes." The driver process is responsible for three things: keeping information about

the Spark Application; reacting to a user's programme or input; and analysing, distributing, and

scheduling work among the executors. It resides on a node in the cluster and performs your main()

function (defined momentarily). The driver process is critically necessary since it is the core of a

Spark Application and it is responsible for keeping all of the important information updated during

the application's lifetime.

The executors are the ones who are accountable for carrying out the task that has been delegated to

them by the driver. This indicates that each executor is solely responsible for two things: running the

code that has been given to it by the driver, and reporting back to the driver node the current status

of the computation that is taking place on that executor.

The cluster manager is responsible for managing the underlying hardware and allocating resources

to Spark applications. This might be Spark's standalone cluster manager, YARN, or Mesos.

Alternatively, it could be one of numerous other fundamental cluster managers. This indicates that a

cluster is capable of simultaneously hosting many instances of a Spark application running at the

https://www.hadoopexam.com/

 5

same time. In the next section of this book, titled "Part IV: Production Applications," we will have a

more in-depth discussion on cluster managers.

From the preceding example, we can see that our driver is located on the left, while the four

executors are located on the right. In this particular design, the idea of cluster nodes has been

eliminated. Through the use of settings, the user has the ability to determine how many executors

should land on each node.

Spark may operate in both a cluster and a local mode. The cluster mode is the default. Because both

the driver and the executors are just processes, it is possible for them to coexist on the same system

or on entirely distinct computers. When operating in the local mode, both of them execute (as

threads) on your own machine rather than in a cluster. We prepared this book keeping in mind local

mode, which means that everything should be able to be executed on a single system.

Spark may operate in both a cluster and a local mode. The cluster mode is the default. Because both

the driver and the executors are just processes, it is possible for them to coexist on the same system

or on entirely distinct computers. When operating in the local mode, both of them execute (as

threads) on your own machine rather than in a cluster. We prepared this book keeping in mind local

mode, which means that everything should be able to be executed on a single system.

Each language's application programming interface (API) will adhere closely to the key notions that

we outlined before. Spark code will be executed via the user's SparkSession, which is made

accessible to the user. The SparkSession will serve as the entry point. When using Spark from within

Python or R, the user never writes explicit instructions for the JVM; rather, the user writes code in

Python and R that Spark will translate into code that Spark can then run on the executor JVMs. This

is the case even when the user is using Spark from within Python or R.

DataFrames

A DataFrame, which is the most popular kind of Structured API, is essentially a representation of a

data table that has rows and columns. The schema consists of the list of columns as well as the types

included inside those columns. A straightforward comparison would be a spreadsheet that has

labelled columns. A spreadsheet is stored on a single computer at a single place, but a Spark

DataFrame may be distributed over thousands of machines. This is the primary distinction between

https://www.hadoopexam.com/

 6

the two. It should be obvious why the data are being stored on several computers: either the data

are too massive to fit on a single system or the calculation would simply take too long to complete

on a single machine.

The idea of a DataFrame is not one that is exclusive to Spark. R and Python have a number of

conceptual similarities. On the other hand, Python/R DataFrames, with a few notable exceptions, are

stored on a single system as opposed to numerous workstations. This restricts what you are able to

do in Python and R with a particular DataFrame to the resources that are available on that particular

system. On the other hand, due to the fact that Spark includes language interfaces for both Python

and R, converting Pandas (Python) DataFrames to Spark DataFrames and R DataFrames to Spark

DataFrames is a rather simple process (in R).

In addition to Datasets and Dataframes, Spark now supports SQL Tables and Resilient Distributed

Datasets as fundamental abstractions (RDDs). Despite the fact that each of these abstractions

represents a distinct dispersed collection of data, they nonetheless have unique interfaces for

interacting with that data. DataFrames are the most user-friendly and productive option; moreover,

they are accessible in every language.

Partitions

Spark divides the data into sections that it calls partitions in order to make it possible for all of the

executors to carry out their tasks simultaneously. A A partition in our cluster is a set of rows that are

hosted on one of our physical machines. The divisions of a DataFrame each represent a different

way.

In the course of the execution, the data will be physically dispersed among all of your cluster's

devices. Spark will work if you just have one partition. even if you have thousands of executors, you

will only have a parallelism of one for the whole process. In the event that you have a single partition

while having numerous Because there is just one computing resource, executor Spark will still only

have a parallelism of one.

When working with DataFrames, one crucial point to keep in mind is that, for the most part, we do

not actively change the divisions of the data. (with regard to each person) In the physical partitions,

we only provide the high-level changes of the data, and Spark takes care of the rest. Decides how

the task will be carried out in its entirety throughout the cluster. Lower level application

https://www.hadoopexam.com/

 7

programming interfaces are available (through the Resilient Distributed Object interface for

datasets), and we go through them in Part III of this book.

Transformations

The fundamental data structures in Spark are immutable, which means that they cannot be altered

once they have been generated. If you are unable to modify it in any way, what are you going to do

with it then? This is something that may seem unusual at first. In order to "alter" a DataFrame, you

will need to inform Spark on the manner in which you would want to transform the DataFrame that

you now have into the DataFrame that you desire.

The name for these kinds of instructions is "transformations." Let's carry out a straightforward

transformation to discover all even integers included inside the present DataFrame.

Wide Dependency:

A transformation that follows the broad dependence (or wide transformation) style will have

numerous input partitions leading to the production of many output partitions. This process, in

which Spark will trade partitions throughout the cluster, is often known to as a shuffle, and you will

frequently hear it referred to as such. When narrow transformations are used, Spark will

automatically carry out an action known as pipelining on narrow dependencies. This implies that if

we define many filters on DataFrames, they will all be carried out in-memory if we use narrow

transformations. One cannot make the same statement about shuffles. When we carry out a shuffle,

Spark will save the outcomes of the operation on disc. Because shuffle optimization is such an

important issue, you'll likely come across many discussions about it on the internet, but for the time

being, all you really need to know is that there are two different types of transformations.

Narrow Dependency: Narrow transformations, also known as transformations with narrow

dependencies, are ones in which each input partition will only contribute to a single output partition.

We'll refer to these transformations as narrow. Our where statement in the previous piece of code

establishes a restricted dependence, meaning that just one partition contributes to the maximum of

one output partition.

https://www.hadoopexam.com/

 8

Lazy Evaluation

A graph of processing instructions will not be carried out by Spark until the very last possible second

because it uses a technique known as "lazy evaluation." When we do an operation in Spark, rather

than instantly affecting the data, we develop a plan of transformations that we would want to apply

to our source data. This plan is then executed on our source data. Spark, by delaying the execution

of the code until the very last possible moment, will convert this plan from your raw DataFrame

transforms into a physically efficient plan that will run as efficiently as possible throughout the

cluster. Because of this, the end user may reap enormous advantages as a result of Spark's ability to

optimise the whole data flow from beginning to finish. On DataFrames, there is a feature known as

"predicate pushdown" that serves as an illustration of this concept. If we design a huge Spark job but

provide a filter at the end that only needs us to get one row from our source data, the most effective

approach to carry this out is to access the single record that we needed. This is because the filter

only requires us to fetch one row. Spark will actually assist us in optimising this situation by lowering

the filter on its own own.

Actions

We are able to construct a more rational transformation plan as a result of transformations. We

need to do some action in order to start the calculation. Spark is given the instruction to calculate a

result based on a sequence of transformations through an action. The count action is the simplest

one, and it provides us with the total number of records included in the DataFrame.

divisBy2.count()

Now we can see the outcome! It should come as no surprise that there are 500 numbers between 0

and 999 that are divisible by two. Now, counting isn't the only thing you can do. The following are

the three categories of actions:

actions to collect data to native objects in the appropriate language; actions to see data in the

console; actions to write to output data sources; and actions to view data in the console.

When we were specifying our action, we started a Spark job that runs our filter transformation,

which is a narrow transformation. This is followed by an aggregation, which is a wide transformation,

that performs the counts on a per-partition basis. Finally, a collect with brings our result to a native

https://www.hadoopexam.com/

 9

object in the appropriate language. All of this is viewable by checking the Spark UI, which is a tool

that is included with Spark and gives us the ability to monitor the Spark tasks that are currently

executing on a cluster.

DataFrames in addition to SQL

In the last example, we went through the steps of a straightforward example; now, let's go through

the steps of a more complicated example while following along in both DataFrames and SQL. Spark

the same modifications in precisely the same manner regardless of the language that is being used.

Before Spark actually executes your code, you have the option of expressing your business logic in

SQL or DataFrames (written in either R, Python, Scala, or Java), and Spark will compile that logic

down to an underlying plan (which can be seen in the explain plan). You, as a user of Spark SQL, have

the ability to register any DataFrame as a table or view (a temporary table), and then query that

DataFrame with standard SQL. There is no difference in performance between writing SQL queries

and writing DataFrame code since they both "compile" to the same underlying plan that we define in

DataFrame code. This is the case because DataFrame code is compiled.

With one easy method call, a DataFrame may be transformed into a table or view of your choosing.

https://www.hadoopexam.com/
https://www.hadoopexam.com/Cloudera_Certification/CCA159/What_is_cloudera_certifications_CCA131_CCA175_CCA159_CCPDE575_Exam.html

 1

Contents
Chapter-7: Apache Impala .. 1

Overview ... 1

Benefits of using Impala .. 2

How Impala Works with Hadoop .. 2

Impala and Query Execution ... 2

Impala and Hive .. 3

A Brief Introduction to Impala Metadata and the Metastore .. 3

How Impala Uses HDFS ... 4

How Impala Uses HBase .. 4

Constituent parts of the Impala .. 5

Chapter-7: Apache Impala

Overview

On data that is stored in common Apache Hadoop file formats, the SQL queries that are provided by

the Apache Impala project provide great speed and low latency. Instead of the lengthy batch

processes that are typically associated with SQL-on-Hadoop technologies, which are made possible

by the slow response times for queries, interactive exploration and fine-tuning of analytic queries

are now possible. (You will often come across the word "interactive" being used to different sorts of

quick queries with response times on a human-scale.)

Both Apache Hive and Impala are able to exchange their databases and tables because to Impala's

integration with the Apache Hive metastore database. Because of Impala and Hive's high degree of

interaction with one another and their compliance with the HiveQL syntax, you can use either

Impala or Hive to build tables, run queries, load data, and do other similar tasks.

The following is a list of some of the primary benefits offered by the Impala:

- Because Impala is integrated with the preexisting CDH ecosystem, it is possible to store,

distribute, and retrieve data by using the many solutions that are included with CDH. This

prevents the creation of data silos and lowers the need for costly data transfer.

- Impala allows users to have access to data that is stored in CDH without having them to have

the Java expertise that is necessary for MapReduce tasks. The HDFS file system is

immediately accessible to Impala, allowing for direct data retrieval. In addition to this,

Impala has a SQL front-end that may be used to retrieve data stored in the HBase database

system or in the Amazon Simple Storage System (S3).

https://www.hadoopexam.com/

 2

- Impala queries often provide results within seconds or a few minutes, but Hive queries can

take several minutes or even hours to finish. Impala queries also deliver results much more

quickly.

- Parquet is a columnar storage architecture that is suited for large-scale queries, which are

prevalent in data warehouse applications. Impala is a pioneer in the usage of the Parquet file

format, which was developed by Facebook.

Impala enables you to do SQL queries directly on your Apache Hadoop data while it is stored in

HDFS, HBase, or the Amazon Simple Storage Service. These searches are both quick and interactive

(S3). Impala utilises the same metadata, SQL syntax (referred to as Hive SQL), ODBC driver, and user

interface (referred to as the Impala query UI in Hue) as Apache Hive. This is in addition to using the

identical unified storage platform.

This offers a platform that is both well-known and unified, and it can be used for real-time or batch-

oriented queries.

Impala is a new tool that was recently added to the arsenal of options for querying large amounts of

data. Batch processing frameworks like Hive that are based on MapReduce are not rendered

obsolete by Impala's introduction. Batch operations that run over an extended period of time, such

as those requiring the batch processing of Extract, Transform, and Load (ETL) type processes, are the

optimum use case for Hive and other frameworks that are based on MapReduce.

Benefits of using Impala

Impala gives you the following benefits: • A SQL interface that data scientists and analysts are
already familiar with.

• The ability to query large amounts of data in Apache Hadoop (also known as "big data").

• Queries that are executed in a decentralised manner inside a cluster setting, which enables

simple scalability and the use of commodity hardware that is more cost-effective.

• The capability to exchange data files across multiple components without the need for any

steps including copying or exporting and importing the data; for instance, to write with Pig,

convert with Hive, and query with Impala. Because Impala can read from and write to Hive

tables, it is possible to do analytics on Hive-produced data while using Impala for basic data

exchange.

• A unified platform for the processing and analysis of large amounts of data, allowing clients

to save unnecessary expenditures on modelling and ETL.

How Impala Works with Hadoop

The following are the components that make up the Impala solution:

• Clients - Impala's ability to interface with external entities is enabled through clients such as

Hue, ODBC clients, JDBC clients, and the Impala Shell.

• Typically, queries and administrative actions like connecting to Impala are carried out with

the assistance of these interfaces.

• The Hive Metastore is where information about the data that Impala has access to is stored.

For instance, the metastore provides Impala with information on the databases that are

accessible as well as the layout of those databases. The relevant metadata changes are

automatically broadcast to all Impala nodes by the dedicated catalogue service that was

https://www.hadoopexam.com/

 3

introduced in Impala 1.2. This occurs whenever you make changes to schema objects, such

as creating, dropping, or altering them; loading data into tables; and so on through Impala

SQL statements.

• The Impala process is responsible for query coordination and execution. It is a process that

runs on DataNodes. Impala clients' queries may be received, planned, and coordinated by

each instance of Impala running. The queries are subsequently divided over the several

Impala nodes, which then take on the role of workers to carry out the simultaneous query

fragments.

• HBase and HDFS are used for storing data that may be searched later.

Impala and Query Execution

The following procedures are used to handle queries that are run using Impala:

1. User applications use ODBC or JDBC, which both offer standardised querying interfaces, to

deliver SQL queries to Impala. Any impalad in the cluster is available for the user application

to connect to. This impalad will serve as the query's coordinator going forward.

2. After the query has been parsed and analysed by Impala, it is determined what actions need

to be carried out by various impalad instances located across the cluster. Planning goes into

the execution to ensure maximum effectiveness.

3. In order to retrieve data, local instances of impalad connect to several services, such as HDFS

and HBase.

4. The results of each impalad are sent to the client via the coordinating impalad, which

receives the data from each impalad.

Impala and Hive

Impala takes use of a variety of Hadoop ecosystem components that are already well-known to

users. Since Impala is capable of exchanging data with other Hadoop components in both a

consumer and producer capacity, it is able to integrate itself into your ETL and ELT pipelines in a

variety of different ways.

An important objective of the Impala project is to improve the speed and effectiveness of SQL-on-

Hadoop operations to the point where they become appealing to new sorts of users and open up

Hadoop to new kinds of use cases. It takes use of preexisting Apache Hive infrastructure whenever it

is feasible to do so in order to carry out long-running, batch-oriented SQL queries; this infrastructure

is already in place for many Hadoop users.

Impala, in particular, stores the definitions of its tables in a regular MySQL or PostgreSQL database

that is referred to as the metastore. This is the same database that Hive uses to store information of

this kind. Therefore, Impala is able to access tables that have been created or loaded by Hive, so long

as all columns utilise data types, file formats, and compression codecs that are supported by Impala.

As a result of the original emphasis placed on the features and efficiency of queries, Impala is able to

read a wider variety of data types using the SELECT statement than it is able to create using the

INSERT statement. Hive must be used to load the data before it can be queried via file formats such

as Avro, RCFile, or SequenceFile.

The Impala query optimizer has the ability to use table statistics in addition to column statistics.

Initially, you acquired this information by using the ANALYZE TABLE command in Hive; however,

https://www.hadoopexam.com/

 4

beginning with version 1.2.2 of Impala and above, you should use the COMPUTE STATS statement

instead. The COMPUTE STATS tool needs less setup, is more stable, and does not require the user to

move between the Impala shell and the Hive shell at any point throughout the process.

A Brief Introduction to Impala Metadata and the Metastore

In the section titled "How Impala Works with Hive," located on page 19, it is said that Impala stores

information on table definitions in a central database called as the "metastore." Additionally, Impala

monitors the following additional information for the low-level properties of data files:

• The actual locations, inside HDFS, of each block in the file system.

When a table has a significant amount of data and/or a big number of partitions, obtaining all of the

table's information may be a time-consuming process that, in certain instances, might take several

minutes. Therefore, all of this information is stored in the cache of each Impala node so that it may

be reused for subsequent searches against the same database.

Before a query can be issued against a table, all of the other Impala daemons in the cluster need to

receive the most recent metadata, which will replace any out-of-date cached metadata. This is

necessary in the event that either the table definition or the data contained within the table is

modified. All DDL and DML statements that are executed via Impala are subject to an automated

metadata update, which is handled by the catalogd daemon and begins with version 1.2 of the

Impala database. For more information, please refer to page 17 of The Impala Catalog Service.

You should still use the REFRESH statement (when new data files are added to existing tables) or the

INVALIDATE METADATA statement (for entirely new tables or after dropping a table, performing an

HDFS rebalance operation, or deleting data files) when performing DDL and DML operations through

Hive or making changes manually to files in HDFS. The retrieval of metadata for all tables that are

monitored by the metastore is performed when the INVALIDATE METADATA command is issued on

its own. If you are aware that only some tables have been modified outside of Impala, you may use

the command REFRESH table name for each table that has been impacted to only obtain the most

recent metadata for the tables that have been modified.

How Impala Uses HDFS

As its primary form of data storage, Impala makes extensive use of the distributed filesystem HDFS.

When it comes to protecting itself from failures in hardware or networks on individual nodes, Impala

depends on the redundancy offered by HDFS. The information included inside Impala tables is stored

in HDFS in the form of data files, and these files make use of the standard HDFS file formats and

compression codecs. Impala will read all of the data files that are present in the directory for a new

table, notwithstanding the fact that each file has a different name. Impala assigns new names to

existing files before adding new data to them.

How Impala Uses HBase

An alternate storage media for Impala data is HBase, which is an alternative to HDFS. It is a database

storage system that is built on top of HDFS, however it does not have any built-in support for SQL. A

great number of Hadoop users already have it installed and store enormous data sets in it that are

often sparse. You will be able to query the contents of HBase tables using Impala if you first define

https://www.hadoopexam.com/

 5

such tables in Impala and then map them to similar tables in HBase. You may even conduct join

queries that include both Impala and HBase tables in the results set.

SQL queries that are run on data that is stored in common Apache Hadoop file formats may be

executed by the Apache Impala with high speed and low latency.

The following is an inventory of the components that make up the Impala solution.

Impala: The Impala service is responsible for the coordination and execution of queries that are

received from users. The queries are subsequently divided over the several Impala nodes, which

then take on the role of workers to carry out the simultaneous query fragments.

The Hive Metastore: is where information on the data that is accessible to Impala is stored. For

instance, the metastore provides Impala with information on the databases that are accessible as

well as the layout of those databases. Impala's dedicated catalogue service is responsible for

automatically broadcasting any relevant metadata changes to all of Impala's nodes whenever you

make changes to the schema (such as creating, dropping, or altering objects), load data into tables,

or perform any other operation using SQL statements.

Clients: Interactions with Impala may be carried out by a wide variety of entities, including Hue,

ODBC clients, JDBC clients, Business Intelligence applications, and the Impala Shell. Typically, queries

and administrative actions like connecting to Impala are carried out with the assistance of these

interfaces.

Constituent parts of the Impala

The Impala service is a massively parallel processing (MPP) database engine that operates over a

distributed environment. It is made up of a variety of daemon processes, each of which operates on

a distinct host inside your Hadoop cluster.

The Impala service is comprised of the following groups of processes, which are together referred to

as roles.

Impala Daemon

The Impala daemon, which is physically embodied by the impalad process, is the essential

component of the Impala system. A few of the most important tasks that are carried out by an

Impala daemon are as follows:

• Performs reading and writing operations on data files.

• It'll take queries sent through the impala-shell command, Hue, JDBC, or ODBC if you choose

to use it.

• Performs the queries in parallel and distributes the work evenly among the cluster.

• Sends intermediate query results to the central coordinator for review.

• One of the following strategies might be used to bring about the appearance of Impala

daemons:

• Both HDFS and Impala are hosted on the same physical machine, and each Impala daemon is

executed on the same host as a DataNode.

• Impala is installed independently in a computing cluster, and it retrieves data from HDFS, S3,

ADLS, and other locations through remote connections.

https://www.hadoopexam.com/

 6

StateStore

The Impala StateStore continually monitors the health of all Impala daemons in a cluster. It's a

statestored daemon process. One cluster host needs this procedure. If one Impala daemon becomes

offline due to hardware failure, network fault, software issue, or other cause, the StateStore notifies

all other Impala daemons so subsequent queries may bypass the inaccessible daemon.

StateStore is not necessarily crucial to the regular functioning of an Impala cluster since it helps

when things go wrong and broadcasts information to coordinators. If the StateStore is not

functioning or unavailable, Impala daemons continue running and distributing tasks as normal with

known data. If additional Impala daemons die, the cluster becomes less resilient and metadata

becomes less consistent. StateStore reestablishes contact with Impala daemons and continues

monitoring and broadcasting when it comes back online.

Queries that access the new object produced by a DDL statement while the StateStore is offline will

fail.

Impala Server

The Catalog Server sends Impala SQL statement information updates to all Impala daemons. It's a

catalogd daemon process. One cluster host needs this procedure. Because queries are transmitted

via StateStore, statestored and catalogd should execute on the same host.

When Impala statements alter metadata, the catalogue service avoids REFRESH and INVALIDATE

METADATA commands. Before running a query on an Impala node after creating a table, loading

data, etc. in Hive, you must perform REFRESH or INVA LIDATE METADATA.

https://www.hadoopexam.com/
https://www.hadoopexam.com/Cloudera_Certification/CCA159/What_is_cloudera_certifications_CCA131_CCA175_CCA159_CCPDE575_Exam.html

 1

Contents
Chapter-8: Apache OOZie ... 1

Overview ... 1

Oozie Workfows .. 1

Oozie Architecture .. 3

Use-Cases of Apache Oozie ... 3

Oozie Editors ... 3

Hue Editor for Oozie.. 3

Oozie Eclipse Plugin (OEP) .. 4

Oozie Workflow .. 5

Chapter-8: Apache OOZie

Overview

Oozie apps are comparable to executables found in Unix, whereas Oozie jobs are comparable to the

processes found in Unix. Users of Oozie create applications, and each individual runthrough of an

application is referred to as a job.

Apache Oozie Workflow Scheduler for Hadoop is a workflow and coordination tool for managing

Apache Hadoop processes, including the following:

- Directed acyclic graphs (DAGs) of actions are what make up Oozie Workflow tasks. Generally

speaking, actions are Hadoop jobs (MapReduce, Streaming, Pipes, Pig, Hive, Sqoop, etc).

- Recurring Workflow tasks may be triggered by Oozie Coordinator jobs depending on the

time (or frequency) and the availability of data.

- Oozie Bundle jobs are collections of Coordinator tasks that are treated as a single job for the

purposes of management.

You may utilise Oozie, which is an extensible, scalable, and data-aware service, to coordinate

dependencies across tasks that are operating on Hadoop.

Oozie Workfows

A Hadoop task that consists of many stages is known as an Oozie workflow. A workflow is a

collection of action nodes and control nodes that are organised in a directed acyclic graph (DAG) that

captures control dependence. Each action in a workflow is often a Hadoop job (for example, a

MapReduce, Pig, Hive, or Sqoop job), and a DAG records the control dependency. In addition, there

may be activities that are not classified as Hadoop jobs (e.g., a Java application, a shell script, or an

email notification).

https://www.hadoopexam.com/

 2

The sequence in which these activities are carried out is determined by the arrangement of the

nodes in the process. In a process, an activity will not begin until the action that came before it has

completed.

It is up to the control nodes in a process to regulate the order in which activities are carried out. The

beginning and the conclusion of a process are denoted by the start control node and the end control

node, respectively. The control nodes known as fork and join make it possible to do out tasks

simultaneously. The decision control node functions similarly to a switch or case statement in that it

may pick a certain execution route inside the work flow by making use of information gleaned

directly from the task. An example of a work flow is shown.

Workflows are directed acyclic graphs, which means that they do not support loops in the flow of

information.

Oozie is a web-based application written in Java that serves as a workflow manager and coordinator.

It is used to manage and coordinate activities in the Hadoop ecosystem. The structure of its work

flow is quite similar to that of a Direct Acyclic Graph (DAG)[1]. Oozie is capable of managing

thousands of tasks in a Hadoop cluster because to its scalable design.

There are three standard occupations available in Oozie.

1. Oozie Workflow Jobs: These jobs indicate the order in which actions are to be carried out.

2. Oozie Coordinator Jobs: Coordinates the task and determines when it should be activated

based on factors such as time and data availability.

3. The Oozie Bundle is a package consisting of numerous Workflow and Coordinator

applications.

Action node and control flow node are both components of the Oozieworkflow.

Action node: An action node is a representation of a workflow activity, such as importing data using

Sqoop, putting files into HDFS, importing data using MapReduce, Pig, or Hive tasks, or executing a

shell script for a programme that was built in Java. Action nodes are responsible for making decisions

on how jobs are carried out.

Control-flow node: A control-flow node directs the flow of work from one action to the next inside a

workflow by permitting features such as conditional logic, which allows for the workflow to take one

of many possible paths based on the outcome of a previous action node.

https://www.hadoopexam.com/

 3

There is just one control node, but the number of jobs determines how many action nodes will be

created. The number of jobs and the action node's own count will always be equal.

Oozie Architecture

The Oozie server is implemented as a Java web application, and all of the required data is saved in a

database. Any kind of database will do, whether it Derby, MySQL, or Oracle, for example. Hadoop

cluster serves as the repository for all tasks. Oozie customer contact to the Oozie server, which will

be responsible for maintaining and processing the tasks. Following the processing of the data,

valuable information is saved in the database. Hadoop cluster serves as the repository for all tasks.

The Oozie client makes contact with the Oozie server so that jobs can be managed and processed.

Following the processing of the data, valuable information is saved in the database.

Use-Cases of Apache Oozie

Apache Oozie is used by Hadoop system administrators to run complex log analysis on HDFS.

Hadoop Developers use Oozie for performing ETL operations on data in a sequential order and

saving the output in a specified format (Avro, ORC, etc.) in HDFS. In an enterprise, Oozie jobs are

scheduled as coordinators or bundles.

Oozie Editors

Before we dive into Oozie lets have a quick look at the available editors for Oozie. Most of the time,

you won’t need an editor and will write the workflows using any popular text editors (like

Notepad++, Sublime or Atom) as we will be doing in this tutorial.

But as a beginner it makes some sense to create a workflow by the drag and drop method using the

editor and then see how the workflow gets generated. Also, to map GUI with the

actual workflow.xml created by the editor. The most popular among Oozie editors is Hue.

Hue Editor for Oozie

This editor is very handy to use and is available with almost all Hadoop vendors’ solutions. The

following screenshot shows an example workflow created by this editor.

You can drag and drop controls and actions and add your job inside these actions.

https://www.hadoopexam.com/

 4

Oozie Eclipse Plugin (OEP)

Oozie Eclipse plugin (OEP) is an Eclipse plugin for editing Apache Oozie workflows graphically. It is a

graphical editor for editing Apache Oozie workflows inside Eclipse. Composing Apache Oozie

workflows is becoming much simpler. It becomes a matter of drag-and-drop, a matter of connecting

lines between the nodes. The following screenshots are examples of OEP.

https://www.hadoopexam.com/

 5

Oozie Workflow

The OOZIE Workflow is a set of actions that are organised in a DAG. Definition of an Oozie process

written in the hPDL language. The Oozie process has a set of nodes, including the Start control node,

the End control node, the Kill control node, the Decision node, the Fork node, and the Join node.

a. Start control node: Every Oozie workflow has to have a start control node, and the workflow

will always begin execution from the start control node.

b. End control node: Once the task has been successfully finished, it will proceed to the end

control node. When you reach the end control node, it indicates that there were no errors.

c. Kill control node: If we want to stop the workflow from being executed, then we need to

utilise the kill control node. It is possible that there are many kill control nodes.

https://www.hadoopexam.com/
https://www.hadoopexam.com/Cloudera_Certification/CCA159/What_is_cloudera_certifications_CCA131_CCA175_CCA159_CCPDE575_Exam.html

 6

https://www.hadoopexam.com/

 1

Contents
Chpater-9: Apache Kafka .. 1

Overview ... 1

Pub Sub System ... 1

Kafka Architecture .. 2

Topics .. 2

Brokers .. 3

Records.. 4

Partitions ... 4

KAFKA REAL TIME APPLICATIONS ... 6

Chpater-9: Apache Kafka

Overview

Apache Kafka is a platform for continuously receiving messages. It is built with high performance,

high availability, and redundancy in mind from the beginning.

The following are some examples of apps that may leverage such a platform:

• Things Connected to the Internet Telemetry data may be sent back to a server via the

Internet from a variety of devices, including televisions, refrigerators, washing machines,

dryers, thermostats, and personal health monitors.

• Sensing and Control Networks. It is possible to equip both expansive environments (such as

farms, amusement parks, and woods) and intricate machines (such as engines) with a variety

of sensors to monitor data or the present state of the environment.

• Positional Data. Sending location data to a centralised platform is possible for delivery

vehicles as well as massively multiplayer online games.

• Any Additional Real-Time Data. Satellites and medical sensors both have the ability to

transmit data to a centralised location for further analysis.

Pub Sub System

The ideal publish-subscribe system is one that is simple and uncomplicated: the messages published

by Publisher A need to find their way to Subscriber A, the messages published by Publisher B need to

find their way to Subscriber B, and so on.

https://www.hadoopexam.com/

 2

• Unlimited Lookback is a perk that should be included in any ideal system. At any given

moment in time, a new Subscriber A1 is able to read the stream that is being published by

Publisher A.

• Message Retention. No messages are lost.

• No limits on the storage space. Messages can be stored in the publish-subscribe system in an

unlimited capacity.

• Absolutely no downtime. The publish-subscribe system never goes offline for maintenance.

• There are no scaling limits. The publish-subscribe system is able to accommodate an

unlimited number of publishers and/or subscribers while maintaining a consistent delivery

latency for messages.

Kafka Architecture

The design of Kafka deviates from that of the ideal publish-subscribe system, as is the case with all

systems that exist in the actual world. Some of the most important distinctions are as follows:

• A replicated and distributed commit log serves as the foundation upon which messaging is

built.

• Because the customer now has additional functionalities, they are also responsible for a

greater amount.

• Instead of individual messages, batch messaging is tuned to work more efficiently.

• Messages are kept even after they have been eaten, and users have the ability to consume

them again.

These design choices have led to the following outcomes:

• Extreme horizontal scalability

• Very high throughput

• High availability

• However, distinct semantics and message delivery guarantees are guaranteed.

Topics

In the hypothetical system that was just described, messages sent out by a single publisher would

magically make it to the inboxes of each subscriber.

Kafka incorporates the idea of a topic into his writing. The use of a topic makes it easier for

publishers and subscribers to find each other.

https://www.hadoopexam.com/

 3

A queue of messages that have been produced by one or more producers and read by one or more

consumers is what we mean when we talk about a subject. The name of a subject is what identifies

it. This name is a component of a namespace that is used globally by that Kafka cluster.

Only applicable to Kafka: Subscribers are referred to as consumers, while publishers are referred to

as producers. When a producer or consumer connects their device to the publish-subscribe system,

they are granted the ability to read from or contribute to a particular subject.

Brokers

Kafka is a distributed system that embodies the fundamental elements of the publish-subscribe

architecture defined earlier as the ideal.

Each host that makes up the Kafka cluster is responsible for running a server that is known as a

broker. This broker stores messages that have been submitted to topics and fulfils consumer

requests.

https://www.hadoopexam.com/

 4

Kafka was developed to operate on numerous hosts simultaneously, with a separate broker running

on each server. If one of the hosts stops working for whatever reason, Kafka will do all in its power

to keep the others operational. This helps to achieve some of the criteria for the ideal publish-

subscribe system, including "No Downtime" and "Unlimited Scaling."

All of the Kafka brokers communicate with Zookeeper in order to provide distributed coordination,

which provides further support for the "Unlimited Scaling" requirement of the ideal system.

The same topics are discussed by many brokers. In order to achieve the objectives of "No

Downtime," "Unlimited Scaling," and "Message Retention," replication is an essential component.

There is a single broker who is in charge of organising the activities of the cluster. This particular

broker is referred to as the controller. As was discussed before, the optimal behaviour of a topic is

that of a queue of messages. In point of fact, having just a single queue causes scale problems. The

implementation of partitions in Kafka is what contributes to the topics' resilience.

Records

A record is the term used in Kafka to refer to a publish-subscribe message. A record is made up of a

key-value pair as well as other information, which may include a timestamp. The key is optional;

however, it may be used to distinguish messages coming from the same data source. Arrays of bytes

are used for the storage of keys and values in Kafka. Aside from that, it does not care about the

format at all.

Headers are something that may be included in the metadata of each record. Key-value pairs may be

used to contain application-specific information when using headers.

In the context of the header, the keys are considered to be strings, while the values are considered

to be byte arrays.

Partitions

Kafka organises the data it manages into partitions, rather than storing them all in a single log as

would be the case with other systems. One way to think of partitions is as a subset of all the records

that pertain to a subject. The concept of "Unlimited Scaling" may be helped along by partitions.

Records that are included inside the same partition are organised according to their time of entry.

When a subject is first formed, it is given two attributes to customise it with:

partition count

The number of partitions that records for this topic will be spread among.

Replication factor: The number of copies of a partition that are maintained to ensure consumers

always have access to the queue of records for a given topic. Each topic has one leader partition. If

the replication factor is greater than one, there will be additional follower partitions. (For the

replication factor = M, there will be M-1 follower partitions.)

Any Kafka client (a producer or consumer) communicates only with the leader partition for data. All

other partitions exist for redundancy and failover. Follower partitions are responsible for copying

new records from their leader partitions. Ideally, the follower partitions have an exact copy of the

contents of the leader. Such partitions are called in-sync replicas (ISR). With N brokers and topic

replication factor M, then

https://www.hadoopexam.com/

 5

• If M < N, each broker will have a subset of all the partitions

• If M = N, each broker will have a complete copy of the partitions

In the following illustration, there are N = 2 brokers and M = 2 replication factor. Each producer may

generate records that are assigned across multiple partitions.

When it comes to maintaining accurate record throughput, partitions are essential. Choosing the

appropriate number of partitions and replications for a topic does two things: it ensures that the

leader partitions are distributed uniformly throughout the brokers in the cluster, and it ensures that

partitions belonging to the same topic are about the same size. Helps to distribute the workload

among the brokers.

In reality, Kafka is a store that is responsible for storing messages that originate from processes, also

known as producers. After that, the data or messages are partitioned into a number of distinct

partitions inside the respective Topics. The messages are indexed and saved in this Topic's partition

in addition to a timestamp for each message. On the other hand, other processes that are referred

to as Consumers are able to query messages from these partitions. Kafka, which is working between

these producers and consumers, operates on a cluster consisting of one or more servers, and the

partitions may be dispersed among different nodes in the cluster. When Apache Storm, Apache

HBase, and Apache Spark are used in conjunction with Apache Kafka, the real-time streaming data is

processed in an effective and efficient manner. The fundamental structure of Kafka is seen in Figure.

https://www.hadoopexam.com/

 6

As a result of Kafka being deployed as a cluster on many servers, the complete publish and subscribe

messaging system is managed by Kafka with the assistance of four application programming

interfaces (APIs), namely the producer API, consumer API, streams API, and connector API. Because

of its capacity to provide fault-tolerant delivery of enormous message streams, it has begun to

replace some of the more traditional messaging systems, such as JMS, AMQP, and others. Topics,

records, and brokers are three of the most important concepts in Kafka's architectural scheme. The

stream of records that make up a topic each contain a unique set of information. On the other hand,

the responsibility of reproducing the communications falls on the Brokers.

KAFKA REAL TIME APPLICATIONS

Messaging: Kafka works glowing as a substitute message broker which is used for a variety of

reasons. Kafka has well throughput and built-in partitioning with replication, and fault tolerance

hich makes it a good solution for large scale message processing applications. In our experience

messaging uses are often comparatively low-throughput, but may require low end-to-end latency

and often depend on the strong durability guarantees Kafka provides.

Website Activity Tracking: The original application of Kafka was to be able to rebuild a user activity

tracking pipeline as a set of real-time publish-subscribe feeds means site activity like page views,

searches, or other actions users may take is published to central topics with one topic per activity

type. These feeds are available for subscription for a range of use cases including real-time

processing, real-time monitoring, and loading into Hadoop or offline data warehousing systems for

offline processing and reporting. Activity tracking is often very high volume as many activity

messages are generated for each user page view.

Metrics: Kafka is often used for operational monitoring data. This indulges aggregating statistics

from distributed applications to produce centralized feeds of operational data.

https://www.hadoopexam.com/

 7

Log Aggregation: Kafka is also used as an alternative to log aggregation solution. Log aggregation

Combines physical log files for servers and places them in a central processing location. Kafka

extracts file details and provides clearer extraction of log or event data as a as a stream of messages.

This allows processing of low latency response time and easier support for multiple data sources and

distributed data consumption. Compared with to log-centric systems such as Scribe or Flume, Kafka

offers equally good performance, stronger durability guarantees due to replication, and much lower

end-to-end latency.

Stream Processing: Kafka users are using Kafka to process data in processing pipelines of multiple

stages, and raw input data are put into use in Kafka and then added, enriched or converted into new

themes for subsequent consumption or tracking. For example, in order to use news articles, a

workstation can scan the content of the article in its RSS content on "articles"; Additional processing

can normalize or reduce this content and publish the content of the pure article to a new topic; the

last run may try to present this content to users. These processing pipelines create real-time data

streams based on individual themes. According to 0.10.0.0, Apache Kafka has a light but powerful

streaming library called Kafka Stream to perform data processing as described above. Apart from

Kafka Streams, alternative tools for the development of open-source script include Apache Storm

and Apache Samza.

https://www.hadoopexam.com/
https://www.hadoopexam.com/Cloudera_Certification/CCA159/What_is_cloudera_certifications_CCA131_CCA175_CCA159_CCPDE575_Exam.html

 1

Contents
Chapter-10: Apache NiFi ... 1

Overview ... 1

Benefits of NiFi DataFlow .. 1

NiFi Architecture ... 2

NiFi as Cluster .. 3

NiFi Features ... 3

The fundamental ideas of NiFi .. 6

Chapter-10: Apache NiFi

Overview

To put it another way, NiFi was developed to automate the transfer of data from one system to

another. Although the word "dataflow" is used in a number of different settings, for the sake of this

discussion, we will use it to refer to the controlled and automatic flow of information between

systems. This issue area has been there since since businesses started using more than one system,

with some of those systems producing data and some of those systems using data for their

operations. Extensive discussion and articulation have taken place with regard to the challenges and

solution patterns that have arisen. The Enterprise Integration Patterns document has a format that is

both comprehensive and easy to consume.

Through the years, dataflow has become one of those undesirable aspects of an architecture that

are required. However, there are a number of active and quickly developing initiatives that are

making dataflow a whole deal more fascinating and a great deal more crucial to the success of any

given business. Among them are topics like service-oriented architecture, the proliferation of

application programming interfaces (APIs), the internet of things, and big data. In addition, the

amount of stringency that is required to ensure compliance, privacy, and security is always

increasing.

Even with all of these new ideas being developed, the patterns and requirements of dataflow have

remained essentially same for the most part.

The key distinctions then are the magnitude of the complexity, the velocity of change that must

occur in order to adapt, and the fact that, at scale, the exceptional instance becomes the norm. NiFi

was developed specifically to assist in overcoming the difficulties associated with current dataflow.

Benefits of NiFi DataFlow

The use of this design paradigm results in a number of advantageous outcomes, which contribute to

NiFi's status as a highly efficient platform for the construction of robust and scalable dataflows. A

few examples of these advantages are as follows:

https://www.hadoopexam.com/

 2

• Is inherently asynchronous, which allows for very high throughput and natural buffering

even as processing and flow rates fluctuate

• Provides a highly concurrent model without a developer having to worry about the typical

complexities of concurrency

• Promotes the development of cohesive and loosely coupled components, which can then be

reused in other contexts and promotes testable unidirectional dependencies

• Lends itself well to the visual creation and management of directed graphs of processors

• Error management becomes as natural as the happy route rather than a coarse-grained

catch-all due to the resource restricted connections.

• Critical functions such as back-pressure and pressure release become highly natural and

intuitive.

• It is possible to quickly understand and monitor the flow of data across the system, as well

as the points of entry and departure for the data itself.

NiFi Architecture

NiFi is run on a host operating system inside a Java Virtual Machine (JVM). The following is a list of

the key components of NiFi when run on the JVM:

Web Server: The HTTP-based command and control API for NiFi is what the web server will be used

to host as its primary function.

Controller of the Flow: The flow controller is the component that acts as the operation's central

processing unit. It handles the schedule of when extensions obtain resources to execute and offers

threads for them to run on. Extensions may run on these threads.

Extensions: Other publications detail the different sorts of NiFi extensions, which may be found in

their respective dictionaries. The most important thing to understand here is that extensions work

and run inside of the JVM.

FlowFile's File Storage Repository: NiFi maintains a record of the current status of what it knows

about a specific FlowFile that is currently being used in the flow in a location known as the FlowFile

Repository. It is possible to plug different implementations into the repository. The permanent

Write-Ahead Log that is stored on a particular disc partition is the method that is used by default.

https://www.hadoopexam.com/

 3

Content Repository: The actual content bytes of a specific FlowFile are stored in the Content

Repository, which is referred to simply as the Content Repository. It is possible to plug different

implementations into the repository. The method that is used by default is a rather straightforward

process that saves data in chunks inside the file system. You have the option of specifying more than

one file system storage location in order to have various physical partitions activated and so lessen

the amount of congestion on any one volume.

Provenance Repository: The Provenance Repository is where all of the data on the provenance of

events is housed. The repository structure is pluggable, and the default implementation uses one or

more actual storage volumes. The repository may be expanded using additional plug-ins. Event

information is indexed and searchable inside each place it is stored in.

NiFi as Cluster

NiFi 1.0 uses Zero-Leader Clustering. Each NiFi node conducts the same functions on various data

sets. Apache ZooKeeper automatically selects a Cluster Coordinator and handles failover. The Cluster

Coordinator receives heartbeat and status updates from all nodes. Cluster Coordinator reconnects

nodes. ZooKeeper elects a Primary Node for each cluster. DataFlow managers may interact with the

NiFi cluster using any node's UI. Changes are copied to all cluster nodes, giving numerous access

points.

NiFi Features

 Guaranteed Delivery (Guaranteed Delivery)

NiFi was founded on the principle that even when operating at a very large scale, assured delivery

remains an absolute need.

This is made possible by the efficient use of a purpose-built permanent write-ahead log as well as a

content repository. Together, they have been developed in such a manner as to make it possible for

extremely high transaction rates, efficient load-spreading, copy-on-write, and to play to the

strengths of conventional disc read/write operations.

 Buffering of Data with Back Pressure and Pressure Release

https://www.hadoopexam.com/

 4

NiFi allows for the buffering of any and all data that is queued, as well as the ability to apply back

pressure to queues when they reach a certain limit or to "age off" data when it hits a certain age

threshold (its value has perished).

 Queuing Based on Priority

In order to retrieve data from a queue in the most efficient manner possible, NiFi permits the setup

of one or more prioritising algorithms.

The most recent data should be retrieved first by default; however, there are situations in which the

data should be fetched in a different order, such as the biggest first or the oldest first.

 Flow-Specific Quality of Service (latency v throughput, loss tolerance, etc.)

There are some places along the path of a dataflow when the data is vitally essential and cannot

tolerate any loss. There are also situations in which it must be processed and transmitted within a

very short amount of time in order for it to be of any use. NiFi makes it possible to configure these

concerns in a manner that is fine-grained and flow-specific.

Ease of Operation

 Command and Control in the Visual Domain

Dataflows have the potential to become pretty complicated. Having the ability to view those

movements and communicate them graphically may be a huge assistance in reducing that

complexity and determining which areas need to be reduced. NiFi not only allows the construction

of dataflows in a visible manner, but it also does it in real time. It is more comparable to working

with clay than it is to being able to "plan and deploy." If you make a modification to the dataflow,

that it will take effect as soon as you save it. The changes are quite subtle and are confined to the

specific components that were impacted.

It is not necessary to halt a complete flow or collection of flows in order to make a particular

alteration.

 Flow Scheduling Templates

Dataflows have a tendency to be very pattern-oriented, and while there are often many alternative

methods to address an issue, it is really helpful to be able to communicate the best practises that

have been developed. The use of templates enables subject matter experts to construct and publish

their flow designs, while also allowing others to benefit from and participate on these designs.

 Data Provenance

As objects move through the system, NiFi automatically records, indexes, and makes accessible the

provenance data for each item. This applies to fan-in, fan-out, transformations, and other operations

as well. When used to support compliance requirements, troubleshooting, optimization, and a

variety of other situations, this information takes on an incredibly vital role.

 Recording a rolling buffer of fine-grained history as part of the recovery process

The content repository that NiFi uses is intended to perform the function of a rolling buffer of

history. Data is never deleted until it has become obsolete in the content repository or more storage

space is required. This, in conjunction with the data provenance capabilities, allows for an

https://www.hadoopexam.com/

 5

exceptionally valuable base to enable click-to-content, download of content, and replay, all at a

particular moment in the lifespan of an object, which may even span generations.

Protection

 System to Protection System

When it comes to dataflow, security is the single most important factor. NiFi provides a safe

exchange at every point in a dataflow by making use of protocols that encrypt data, such as 2-way

secure socket layer (2-way SSL). In addition, NiFi makes it possible for the flow to encrypt and

decrypt material, as well as make use of shared keys or other techniques on either the sender or the

receiver side of the equation.

 User to Operating System

NiFi supports two-way SSL authentication and offers pluggable authorization so that it may

effectively regulate a user's access at a variety of different levels (read-only, dataflow manager,

admin). If a user inputs a sensitive property like a password into the flow, it is instantly encrypted on

the server side, and it is never again accessible on the client side, not even in its encrypted version.

An example of such a property would be a credit card number.

 Authorization for Multiple Tenants

Each component is subject to the authority level of a specific dataflow, which enables an

administrative user to exercise granular control over the access granted to other components. This

indicates that each NiFi cluster has the capacity to meet the needs of one or more enterprises

simultaneously. When compared to isolated topologies, multi-tenant authorization makes it possible

to implement a self-service model for the management of dataflow. This model gives each group or

organisation the ability to manage flows while maintaining full awareness of the portions of the flow

to which they do not have access.

Extensible Architecture

 Extension

NiFi was designed from the ground up to be extensible, and as such it functions as a platform on

which dataflow operations may be carried out and interact with one another in a way that is both

dependable and consistent. Processors, Controller Services, Reporting Tasks, Prioritizers, and

Customer User Interfaces are all examples of points of extension.

 Isolation of the Classloader

Dependency issues may arise very fast in any system that is built using components. This problem is

addressed by NiFi, which provides a special class loader mechanism. This approach ensures that each

extension bundle is only accessible to a very restricted range of dependencies, which solves the

problem. As a consequence of this, extensions may be developed with very little consideration given

to the possibility that they would be incompatible with another extension. The idea behind these

extension packages is referred to as "NiFi Archives," and it is covered in the Developer's Guide in

further detail.

 Site-to-Site Communication Protocol

The NiFi Site-to-Site (S2S) Protocol is the recommended method of communication for using

between different instances of NiFi. The use of S2S makes it simple to move data from one instance

https://www.hadoopexam.com/

 6

of NiFi to another in a way that is quick, effective, and safe. It is simple to build NiFi client libraries

and incorporate them into other programmes or devices so that they may connect with NiFi via the

S2S protocol. It is feasible to include a proxy server into the S2S communication since the socket-

based protocol as well as the HTTP(S) protocol are supported in S2S in their capacity as the

underlying transport protocol.

Flexible Scaling Model

 Scaling-out of the (Clustering)

As was discussed before, NiFi was developed to be able to scale out by using the clustering together

of a large number of nodes.

If the provisioning and configuration of a single node is capable of handling hundreds of megabytes

per second, then it should be possible to design even a small cluster to handle gigabytes per second.

This therefore presents some intriguing issues in the form of load balancing and fail-over between

NiFi and the systems from which it obtains its data. It may be beneficial to make use of

asynchronous queuing-based protocols such as message services, Kafka, and so forth. Use of

NiFi's'site-to-site' feature is also very effective because it is a protocol that enables NiFi and a client

(including another NiFi cluster) to talk to each other, share information about loading, and exchange

data on specific authorised ports. This is achieved through the use of NiFi's'site-to-site' feature,

which can be found in the NiFi UI.

 Scale up or down

NiFi may also be scaled up or down in a fairly flexible manner due to the way it was created. When

setting NiFi, under the Scheduling tab, it is possible to increase the number of concurrent jobs

running on the processor, which, from the perspective of the NiFi framework, will result in a higher

throughput. This makes it possible for more processes to run at the same time, which results in

increased throughput. On the other end of the spectrum, it is possible to scale NiFi down to the

point where it is acceptable for running on edge devices. This is useful in situations where a minimal

footprint is desirable owing to restricted hardware resources.

The fundamental ideas of NiFi

The core ideas behind NiFi's architecture have a lot in common with the underlying principles behind

flow-based programming. The following is a list of some of the most important topics related to NiFi:

Flow File: Each item that is processed by the system is denoted by a FlowFile, and NiFi maintains a

map of key/value pair attribute strings and the accompanying content of zero or more bytes for each

FlowFile.

FlowFile Processor: Processors are the components that are responsible for carrying out the task. To

put it another way, a processor is responsible for some combination of data routing, data

transformation, and system-to-system mediation. The properties of a certain FlowFile and the

content stream of that file may be accessed by processors. In each given unit of work, processors are

able to perform operations on zero or more FlowFiles and then either commit or rollback the results

of those operations.

Connections: Connections are what offer the real connectivity between different processors in a

system. These serve as queues, enabling a variety of processes to engage with one another at

varying speeds. These queues may have their priorities changed on the fly, and they can also have

higher load boundaries, which enables back pressure to be applied.

https://www.hadoopexam.com/

 7

Flow Controller: The Flow Controller is responsible for retaining the information of how processes

relate to one another as well as managing the threads and allocations of those threads that are used

by all processes. The Flow Controller performs the role of a broker and makes it possible for

processors to trade FlowFiles with one another.

Process Group: Process Group: A Process Group is a particular group of processes and their

connections that may accept data via the use of input ports and send data out using output ports. A

Process Group is sometimes referred to as a process cluster. In this way, process groups make it

possible to generate completely new components only by composing existing components.

The use of this design paradigm results in a number of advantageous outcomes, which contribute to

NiFi's status as a highly efficient platform for the construction of robust and scalable dataflows. A

few examples of these advantages are as follows:

• Is inherently asynchronous, which allows for very high throughput and natural buffering

even as processing and flow rates fluctuate

• Provides a highly concurrent model without a developer having to worry about the typical

complexities of concurrency

• Promotes the development of cohesive and loosely coupled components, which can then be

reused in other contexts and promotes testable unidirectional dependencies

• Lends itself well to the visual creation and management of directed graphs of processors

• Error management becomes as natural as the happy route rather than a coarse-grained

catch-all due to the resource restricted connections.

• Critical functions such as back-pressure and pressure release become highly natural and

intuitive.

• It is possible to quickly understand and monitor the flow of data across the system, as well

as the points of entry and departure for the data itself.

https://www.hadoopexam.com/
https://www.hadoopexam.com/Cloudera_Certification/CCA159/What_is_cloudera_certifications_CCA131_CCA175_CCA159_CCPDE575_Exam.html

 1

Contents
Chapter-13: Apache Phoenix .. 1

Overview ... 1

Apache Phoenix History .. 1

Apache Phoenix & SQL Support .. 1

Apache Phoenix JDBC Connection .. 1

About Apache Phoenix .. 2

Relational Layer ... 2

Apache Phoenix Integration with Hadoop .. 3

Apache HBase ... 3

Phoenix and SQL ... 3

Phoenix not supported SQL Construct .. 3

Phoenix Knobs and Dials ... 4

Cloudera Operational Database .. 4

Apache Phoenix Use Cases ... 4

Chapter-13: Apache Phoenix

Overview
Apache Phoenix is an open source, massively parallel, relational database engine supporting OLTP

for Hadoop using Apache HBase as its backing store. Phoenix provides a JDBC driver that hides the

intricacies of the NoSQL store enabling users to create, delete, and alter SQL tables, views, indexes,

and sequences; insert and delete rows singly and in bulk; and query data through SQL. Phoenix

compiles queries and other statements into native NoSQL store APIs rather than using MapReduce

enabling the building of low latency applications on top of NoSQL stores. Apache Phoenix OLTP and

operational analytics for Apache Hadoop. Apache Phoenix enables OLTP and operational analytics in

Hadoop for low latency applications by combining the best of both worlds:

1. The power of standard SQL and JDBC APIs with full ACID transaction capabilities.

2. And the flexibility of late-bound, schema-on-read capabilities from the NoSQL world by

leveraging HBase as its backing store

Apache Phoenix is fully integrated with other Hadoop products such as Spark, Hive, Pig, Flume, and

Map Reduce.

Apache Phoenix History
Phoenix began as an internal project by the company salesforce.com out of a need to support a

higher level, well understood, SQL language. It was originally open-sourced on GitHub on 28 Jan

2014 and became a top-level Apache project on 22 May 2014. Apache Phoenix is included in the

https://www.hadoopexam.com/

 2

Cloudera Data Platform 7.0 and above,[5] Hortonworks distribution for HDP 2.1 and above, is

available as part of Cloudera labs and is part of the Hadoop ecosystem.

Apache Phoenix & SQL Support

Apache Phoenix takes your SQL query, compiles it into a series of HBase scans, and orchestrates the

running of those scans to produce regular JDBC result sets. Direct use of the HBase API, along with

coprocessors and custom filters, results in performance on the order of milliseconds for small

queries, or seconds for tens of millions of rows.

All standard SQL query constructs are supported, including SELECT, FROM, WHERE, GROUP BY,

HAVING, ORDER BY, etc. It also supports a full set of DML commands as well as table creation and

versioned incremental alterations through our DDL commands.

Apache Phoenix JDBC Connection

Connection conn = DriverManager.getConnection("jdbc:phoenix:server1,server2:3333",props);

where props are optional properties which may include Phoenix and HBase configuration properties,

and the connection string which is composed of:

jdbc:phoenix [:<zookeeper quorum> [:<port number> [:<root node> [:<principal> [:<keytab

file>]]]]]

For any omitted parts, the relevant property value, hbase.zookeeper.quorum,

hbase.zookeeper.property.clientPort, and zookeeper.znode.parent will be used from hbase-

site.xml

configuration file. The optional principal and keytab file may be used to connect to a Kerberos

secured cluster. If only principal is specified, then this defines the user name with each distinct user

having their own dedicated HBase connection (HConnection). This provides a means of having

multiple, different connections each with different configuration properties on the same JVM.

For example, the following connection string might be used for longer running queries, where the

longRunningProps specifies Phoenix and HBase configuration properties with longer timeouts:

Connection conn = DriverManager.getConnection(“jdbc:phoenix:my_server:longRunning”,

longRunningProps);

while the following connection string might be used for shorter running queries:

Connection conn = DriverManager.getConnection("jdbc:phoenix:my_server:shortRunning",

shortRunningProps);

About Apache Phoenix
Apache Phoenix is an SQL layer for Apache HBase and provides a programming ANSI SQL interface.

Using Apache Phoenix, you can create and interact with tables in the form of typical DDL/DML

statements using the Phoenix standard JDBC API. Apache Phoenix is converting HBase into SQL

Databases. HBase, is a distributed NoSQL store and if you need OLTP and Analytics over HBase than

Phoenix.

Phoenix enables OLTP and operational analytics in Hadoop for low latency applications combining

the best of both worlds.

https://www.hadoopexam.com/

 3

 The Power of standard SQL and JDBC APIs with full ACID transaction capabilities.

 The flexibility of late-bound, schema-on-read capabilities from the NoSQL world by

leveraging HBase as its backing store.

 Apache Phoenix has Embedded JDBC Driver which implements the majority of java.sql

interfaces, including metadata API's.

 Apache Phoenix allows columns to be modelled as a multi-part row key or key/value cells.

 Full query support with predicate push down and optimal scan key formation.

 DDL support: CREATE TABLE, DROP TABLE, and ALTER TABLE for adding/removing columns.

 Versioned schema repository. Snapshot queries use the schema that was in place when data

was written.

 DML support: UPSERT VALUES for row-by-row insertion, UPSERT SELECT for mass data

transfer between the same or different tables, and DELETE for deleting rows.

Relational Layer

 Apache Phoenix is a relational layer for Apache HBase

 Query Engine:

o Transform SQL Queries and parses into native HBase API calls. This is in-directly

MapReduce.

o Apache Phoenix pushes as much work as possible onto the cluster for parallel

execution.

o Metadata Repository: This is a Phoenix table itself which helps in typed access to

data stored in HBase tables. It stores tables, views, sequence definitions, secondary

indexes. For your perspective it’s a JDBC Driver.

Apache Phoenix Integration with Hadoop

Apache Phoenix is fully integrated with other Hadoop products such as Spark, Hive, Pig Flume and

MapReduce. For your perspective Apache Phoenix is just like a JDBC driver.

https://www.hadoopexam.com/

 4

Apache HBase

Apache HBase is a high performance horizontally scalable datastore engine for BigData, suitable as

the store of record for mission critical data.

Phoenix and SQL

 Accessing HBase data with Phoenix can be substantially faster than direct HBase API use.

 Phoenix parallelizes queries based on stats. HBase does not know how to chunk queries

beyond scanning an entire region.

 Phoenix pushes processing to the server.

 If you write your own API call, this may not use coprocessors.

 Phoenix has a huge difference for aggregations vs direct HBase API calls.

 Phoenix supports and uses secondary indexes.

Apache Phoenix takes your SQL Query, compiles into a series of HBase scans, and orchestrate the

running of those scans to produce regular JDBC result sets. Direct use of the HBase API, along with

coprocessors and custom filters, results in performance on the order of milliseconds from small

queries, or seconds for tens of millions of rows.

All standard SQL constructs are supported, including SELECT, FROM, WHERE, GROUP BY, HAVING,

ORDER BY etc.

Apache Phoenix also supports a full set of DML commands as well as table creation and versioned

incremental alterations through our DDL commands.

Phoenix not supported SQL Construct

Below is the list of constructs which are currently not supported.

 Relational Operators: Intersect, Minus

 Miscellaneous Built-In functions:

Phoenix Knobs and Dials

Phoenix provides many different knobs and dials to configure and tune the system to run more

optimally on your cluster. The configuration is done through a series of Phoenix-specific properties

specified for the most part in your client-side hbase-site.xml file. In addition to these properties,

there are of course all the HBase configuration properties.

Cloudera Operational Database

Cloudera Operational Datastore is a real-time auto-scaling operational database powered by Apache

HBase and Apache Phoenix. COD is an experience which runs in CDP. Cloudera Operational Database

experience allows self-service creation and management of an operational database. You can

provision a new database with a single click, build application against it and deploy it on the public

cloud without complexity.

Apache Phoenix Use Cases

1. We can use Apache Phoenix for storing data as a basis for measuring activities and

generating reports. You should choose Phoenix because it provides the scalability of HBase

and the expressiveness of SQL.

2. Phoenix can be used for on Demand Data aggregations. If you have floating time range of

https://www.hadoopexam.com/

 5

https://www.hadoopexam.com/
https://www.hadoopexam.com/Cloudera_Certification/CCA159/What_is_cloudera_certifications_CCA131_CCA175_CCA159_CCPDE575_Exam.html

 1

Contents
Chapter-12: Apache Kudu for Cloudera CDP-0011 Certification .. 1

Overview ... 1

Comparison with other storage engines ... 2

Kudu’s Design and its benefits .. 2

HDFS vs Kudu .. 2

Kudu Example Use Cases .. 3

Kudu tables, schemas .. 3

Kudu and Write Operations .. 4

Kudu and Read Operations ... 4

Kudu and API ... 4

Kudu and Consistency Model .. 4

Kudu and Timestamps ... 5

Chapter-12: Apache Kudu for Cloudera CDP-0011 Certification

Overview

- Kudu is an open-source structured data storage engine with low-latency random and

analytical access.

- Kudu uses horizontal partitioning and Raft consensus to provide reduced mean-time-to-

recovery and tail latencies.

- Kudu is part of the Hadoop ecosystem and supports Cloudera Impala, Apache Spark, and

MapReduce.

- Static data sets are usually stored on HDFS using Apache Avro or Apache Parquet for

structured storage.

- HDFS and these formats don't allow changing individual records or random access.

- Semi structured stores like Apache HBase or Cassandra store mutable data sets. These

systems provide low-latency record-level reads and writes but trail static file formats in

sequential read speed for SQL-based analytics or machine learning.

- The gap between static HDFS data sets' analytic performance and HBase and Cassandra's

low-latency row-level random access requires sophisticated structures when both access

patterns are needed in a single application.

- Many organisations implemented data pipelines with streaming input and changes in HBase,

followed by periodic operations to export tables to Parquet for subsequent analysis. Such

architectures have drawbacks:

o Application architects must create complicated code to control data flow and

synchronisation.

o Operators must maintain numerous backups, security controls, and monitoring.

o The resultant architecture may have a large latency between fresh data entering the

HBase "staging area" and being accessible for analyses.

https://www.hadoopexam.com/

 2

o Real-world systems must accommodate late-arriving data, revisions on old records,

or privacy-related removals on transferred data. Rewriting, shifting partitions, and

manual intervention may be needed.

- Kudu is a novel storage system aimed to bridge the gap between sequential-access systems

like HDFS and random-access systems like HBase or Cassandra. Kudu provides a "middle

ground" solution that simplifies the design of many typical workloads. Kudu provides a

straightforward API for row-level inserts, updates, and deletes while offering table scans at

Parquet-like throughputs.

- Apache Hadoop comes with its own storage layer which is called HDFS (Hadoop Distributed

File System).

- The Hadoop distributed file system (HDFS) is a distributed, scalable, and portable file system

written in Java for the Hadoop framework.

- Some consider it to instead be a data store due to its lack of POSIX compliance, but it does

provide shell commands and Java application programming interface (API) methods that are

similar to other file systems.

- A Hadoop instance is divided into HDFS and MapReduce. HDFS is used for storing the data

and MapReduce is used for processing data.

- Based on your data needs you can choose Apache Kudu instead of HDFS.

- Because Kudu is a good solution for the time-series data which are good use case for

collecting data from IoT sensors, works well with Spark.

- Apache Kudu column-oriented data store of the Apache Hadoop ecosystem.

- It provides completeness to Hadoop's storage layer to enable fast analytics on fast data.

- Apache Kudu began as internal project at Cloudera.

Comparison with other storage engines

- Kudu was designed and optimized for OLAP workloads.

- Like HBase, it is a real-time store that supports key-indexed record lookup and mutation.

- Kudu differs from HBase since Kudu's Datamodel is a more traditional relational model,

while HBase is schemaless.

- Kudu's "on-disk representation is truly columnar and follows an entirely different storage

design than HBase/Bigtable".

Kudu’s Design and its benefits

- Fast processing of OLAP workloads.

- Strong but flexible consistency model, allowing you to choose consistency requirements on a

per-request basis, including the option for strict-serializable consistency.

- Structured data model.

- Strong performance for running sequential and random workloads simultaneously.

- Tight integration with Apache Impala, making it a good, mutable alternative to using HDFS

with Apache Parquet.

- Integration with Apache NiFi and Apache Spark.

- Integration with Hive Metastore (HMS) and Apache Ranger to provide fine-grain

authorization and access control.

- Authenticated and encrypted RPC communication.

https://www.hadoopexam.com/

 3

- Automatic fault detection and self-healing: to keep data highly available, the system detects

failed tablet replicas and re-replicates data from available ones, so failed replicas are

automatically replaced when enough Tablet Servers are available in the cluster.

- Location awareness (a.k.a. rack awareness) to keep the system available in case of

correlated failures and allowing Kudu clusters to span over multiple availability zones.

- Logical backup (full and incremental) and restore.

- Multi-row transactions (only for INSERT/INSERT_IGNORE operations as of Kudu 1.15

release).

HDFS vs Kudu

- By combining all of above properties, Kudu targets support for families of applications that

are difficult or impossible to implement using Hadoop storage technologies, while it is

compatible with most of the data processing frameworks in the Hadoop ecosystem.

- A few examples of applications for which Kudu is a great solution are:

o Reporting applications where newly-arrived data needs to be immediately available

for end users.

o Time-series applications that must simultaneously support:

 queries across large amounts of historic data

 granular queries about an individual entity that must return very quickly

- Applications that use predictive models to make real-time decisions with periodic refreshes

of the predictive model based on all historic data

Kudu Example Use Cases

Use Case-1: Streaming Input with Near Real Time Availability

New data arrives rapidly and regularly, yet the same data must be available in practically real time

for readings, scans, and updates. Kudu allows real-time analytics on a single storage layer by

combining fast inserts, updates, and columnar scans.

Use Case-2: Time-series application with widely varying access patterns

A time-series schema arranges and indexes data points by time. This allows for investigating

measurement performance over time or forecasting future behaviour based on past data. Time-

series customer data may be used to store click-stream history, predict future purchases, and for

customer service. These data may be used elsewhere. During analysis, insertions and mutations may

occur individually or in bulk and become quickly available to read data. Kudu can manage all of these

access patterns simultaneously and efficiently.

Kudu handles time-series workloads well for several reasons. With Kudu's hash-based partitioning

and native support for compound row keys, it's easy to build up a distributed table without the

danger of "hotspotting," which is common with range partitioning. In contrast, range partitioning

poses a risk. Many time-series applications only read a few columns, not the whole row, hence

Kudu's columnar storage engine is extremely useful in this context.

Previously, you may have needed many data stores to handle data access patterns. This strategy

makes your software and its procedures more sophisticated and duplicates your data, doubling the

required storage space. Kudu manages all of these access patterns natively, removing the need to

outsource.

https://www.hadoopexam.com/

 4

Use Case-3: Predictive Modelling

Data scientists build predictive learning models from large data sets. As new information is obtained

or the modelled situation changes, the model and data may need to be updated or revised. The

researcher may also adjust the model to examine its impact over time. Each HDFS file must be

completely rebuilt to bring a large volume of data up to date. Kudu updates are near real-time. The

researcher may update the graph in seconds or minutes, rather than hours or days. Batch or

incremental algorithms may be run on the data at any moment with almost real-time results.

Use Case-4: Combining Data in Kudu with Legacy Systems

Companies produce and store data from many sources and formats. Your data may be saved in

Kudu, RDBMS, and HDFS. Impala can query all these sources and formats without changing old

systems.

Kudu tables, schemas

- Kudu stores structured data tables for users.

- A Kudu cluster may have unlimited number of well-defined tables with finite column counts.

- The table's primary key is a subset of those columns. The primary key maintains uniqueness

and is the only index by which rows can be changed or removed effectively.

- This data architecture is familiar to relational database users but different from Cassandra,

MongoDB, Riak, BigTable, etc.

- The user must specify a table's schema when creating it, like with a relational database.

- Undefined columns and primary key uniqueness violations cause errors. Primary key

columns cannot be omitted when using the modify table command.

- We decided to explicitly declare column types instead of utilising NoSQL-style "everything is

bytes" for two reasons.

o Explicit types enable columnar encodings like bit-packing for integers.

o Explicit types offer SQL-like information to other systems, such BI or data

exploration tools.

- Kudu lacks secondary indexes and uniqueness requirements beyond the main key, unlike

other relational databases.

- Kudu needs every table to have a primary key, although future versions will generate

surrogate keys automatically.

Kudu and Write Operations

- User mutates table using Insert, Update, and Delete APIs.

- The user must completely define a primary key, predicate-based deletions or modifications

must be handled by a higher-level access mechanism.

- Kudu supports Java, C++, and Python.

- APIs offer accurate batching and asynchronous error handling to reduce round trips while

processing huge data such as data loads or large updates.

- Kudu does not support multi-row transactional APIs, each mutation runs as its own

transaction, albeit being batched for speed.

- Single-row modifications are always atomic across columns.

Kudu and Read Operations

- Kudu's single table operation is Scan.

- A scan may be filtered by any number of predicates.

https://www.hadoopexam.com/

 5

- We provide only column-constant value comparisons and composite primary key ranges.

- The client API and server understand these predicates to reduce disc and network data

transfers.

- The user may define a scan projection in addition to predicates.

- A projection consists of retrieved columns.

- Because Kudu's on-disk storage is columnar, defining a subset may increase analytic speed.

Kudu and API

- Kudu client library exposes more than data path APIs.

- Hadoop's performance is boosted by data locality scheduling.

- Kudu offers APIs to let Spark, MapReduce, or Impala schedule data ranges.

Kudu and Consistency Model

- Kudu has two consistency modes.

o Snapshot consistency is default: A scan guarantees a snapshot without causality-

violating anomalies. It ensures consistency from a single client's read-your-writes.

o Kudu doesn't ensure external consistency by default: If a client writes, then

connects with another through an external mechanism (e.g. a message bus), the

causal dependency between the two writes is not recorded. A third reader may only

see the second write in a snapshot.

- Based on our experience supporting other systems like HBase, this is adequate for many use

cases.

- Kudu has the possibility to manually propagate timestamps across clients:

o After a write operation, the user may ask the client library for a timestamp token.

This token may be sent to another client over an external channel and then to the

Kudu API, keeping the causal link between writes from both clients.

Kudu and Timestamps

- Kudu utilises timestamps internally for concurrency management

- However, the user can't set a write's timestamp.

- Cassandra and HBase consider a cell's timestamp as a first-class data model element.

- While skilled users may effectively utilise the timestamp dimension, most users find it

perplexing and a cause of user mistake, particularly with back-dated insertions and

removals.

- The user may define a read timestamp. This enables users to run point-in-time searches in

the past and ensures that dispersed processes in a single "query" (e.g., Spark or Impala) read

a consistent snapshot.

https://www.hadoopexam.com/

 1

Contents
Chapter-14: Cloudera Shared Data Experience .. 1

SDX Overview .. 1

SDX and Security ... 1

BigData Challenges: security and governance .. 3

Cloudera SDX (Shared Data Experience) ... 3

Data Catalog .. 8

Chapter-14: Cloudera Shared Data Experience

SDX Overview

SDX is a critical part of the CDP platform from Cloudera. SDX is an integrated set of security and

governance technologies built on metadata and delivering consistent context across all analytics and

public as well as private cloud. SDX reduces security risk and operational costs by delivering

consistent data context across deployments.

Using SDX you can set multi-tenant data access and governance policies only once, and

automatically enforced across the data lifecycle in hybrid as well as multi-clouds.

SDX and Security

SDX data context architecture ensures CDP is secured by design, unlike the approach taken be other

vendors where security is an afterthought or added on top of existing infrastructure. Because of SDX,

enterprise can make new data available at speed and without compromise.

SDX and Deployment

- Corporate Identities: with SDX you can use existing corporate identities and groups with the

multi-tenant clusters.

- Networks & encryptions: With SDX you can configure Kerberos based authentication, and

TLS wire encryption, DNS proxies for web interfaces.

- Storage and encryption: Using SDX, you can enable encrypted data at rest across the

platform.

SDX and Data Access

- Single Sign On: Using SDX you can have LDAP based authentication and authorization for

services and web UIs.

- Authorization: You can use tag-based policies for Authorization using SDX.

- Lineage, non-repudiation & audit: You can have audit of the data access as well as entire

lineage of the data. i.e., what is the source of the data and who all are using it.

https://www.hadoopexam.com/

 2

SDX Key features

- Insightful metadata: Trusted, reusable data assets and efficient deployments need more

than just technical and structural metadata. CDP’s Data Catalog provides a single pane of
glass to administer and discover all data, profiled and enhanced with rich metadata that

includes the operational, social and business context, and turns data into valuable

information.

- Powerful security: Eliminate business and security risks, and ensure compliance by

preventing unauthorized access to sensitive or restricted data across the platform with full

auditing. SDX enables organizations to establish multi-tenant data access with ease through

standardization and seamless enforcement of granular, dynamic, role- and attribute-based

security policies on all clouds and data centers.

- Full encryption: Enjoy ultimate protection as a fundamental part of your CDP installation.

Clusters are deployed and automatically configured to use Kerberos and for encrypted

network traffic with Auto-TLS. Data at rest, both on-premises and in the cloud, is protected

with enterprise-grade cryptography, supporting best practice tried and tested configurations

- Hybrid Control: Meet the ever-changing business needs to balance performance, cost and

resilience. Deliver true infrastructure independence. SDX enables it all with the ability to

move data, together with its context, as well as workloads between CDP deployments.

Platform operational insight into aspects like workload performance deliver intelligent

recommendations for optimal resource utilization.

- Data Governance: Prove compliance and manage the complete data lifecycle from the edge

to AI and from ingestion to purge with data management across all analytics and

deployments. Identify and manage sensitive data, and effectively address regulatory

requirements with unified, platform-wide operations, including data classification, lineage,

and modelling.

SDX and automatic Data profiling

- With data volumes of any type exploding, quickly making new data available to end users

lets organizations capitalize on the flood of information. The limiting factor is the time taken

to understand the data. SDX automatically profiles new data as it arrives to build insight and

classify sensitive information, triggering the appropriate access policies and ensuring

corporate standards and compliance are always met.

Easy, secure data access

- Innovation and digital transformation require organizations to uncover insight and value

from their data at scale. The key enabler is providing all users access to all data and analytics

to experiment and implement new use cases. SDX delivers consistent security and

governance for multi-tenant data access across all deployments, marrying free access with

complete safety and compliance.

Regulatory compliance

- Regulatory compliance (e.g. GDPR and CCPA) demands a modern data architecture that

decreases business and security risks stemming from ever-changing data privacy

requirements. SDX lets organizations identify and manage sensitive data for compliance

without disruption to business processes whilst also providing consistent security and

governance transparently across all data and deployments.

https://www.hadoopexam.com/

 3

BigData Challenges: security and governance

- Sharing Data Across Workloads

o Requires multiple copies of data need to be created.

o Each with its own set of data context

- Burdensome admin effort

o Multiple Clusters=multiple places to administer.

- Missing permissions: One missing permission in one copy of the data can lead to significant

financial and reputation risk.

- Data Sharing: Difficult to share data safely for new Analyses.

- New Regulations: New regulations makes things even more challenging.

Cloudera SDX (Shared Data Experience)

Question: What is Cloudera Shared Data Experience or SDX?

Answer: Cloudera SDX is a suite of technologies that make it possible for an enterprise to pull all of

their data into one place. SDX enables you to share these data with different teams and services in a

secured and governed manner.

Data Security, governance, and control policies are set once and consistently enforced everywhere,

reducing operational costs and business risks while also enabling complete infrastructure choice and

flexibility.

Question: Which of the services are involved within SDX technologies?

Answer: There are four discrete services within SDX technologies

https://www.hadoopexam.com/

 4

- Data Lake: These are set of functionalities for creating safe, secured and governed data lakes

that provide a protective ring around the data wherever it is stored, be that in cloud object

storage or HDFS (Hadoop Distributed File System).

- Data Catalog: This is a service for searching, organizing, securing and governing data within

enterprise data cloud. The Data Catalog service enables you to understand, manage, secure,

and govern data assets across multiple clusters and CDP environments. It will help you

understand how data is created, modified, secured, and protected.

- Replication Manager: A service for copying, migrating, snapshotting, and restoring data

between environments within the enterprise data cloud. This service is used by

administrators and data stewards to move, copy, backup, replicate, and restore data in or

between data lakes.

- Workload Manager: A service for analysing and optimizing workloads within the enterprise

data cloud.

Question: What all can be achieved using Shared Data Experience?

Answer: You can achieve following from the Shared Data Experience

- Data Catalog: Data Catalog is a comprehensive Catalog of all data sets, spanning on-

premises, Cloud Object stores, structured, unstructured, and semi-structured. Which

includes technical schemas from the Hive Metastore, as well as business glossary definitions,

classifications and usage guidance.

- Security: Role Based Access Control applied consistently across the platform. This also

includes full stack encryption and key management.

- Governance: SDX provides enterprise grade audting, lineage and other governance

capabilities applied universally across the platform with rich extensibility for partner

integrations.

- Data Lifecycle management: Comprehensive ingest-to-purge management of data set life

cycle activities.

- Control plane: Using this you can have multi-environment cluster provisioning, deployment,

management, and troubleshooting.

https://www.hadoopexam.com/

 5

Overview

- Cloudera’s Shared Data experience delivers an integrated set of security and governance

technologies built on metadata and delivers persistent context across all analytics as well as

public and private clouds.

Benefits for IT Infra and Ops

- Central control and security

- Find value from source of truth.

- Bring the best tools for each job.

Cloudera Shared Data eXperience (SDX) Cloudera Shared Data eXperience (SDX) provides a powerful

set of data and metadata shared services for security, governance and insight. Policies are set once

and they are automatically enforced across data and analytics in hybrid, private and multi-public

clouds across all analytics and machine learning. SDX is used to: – Achieve and maintain regulatory

compliance (e.g. GDPR and CCPA) across all data and environments and lets you identify and manage

sensitive data. – Ensure metadata and policies are part of every data replication or migration,

regardless of its purpose, and across on-premises, private and public cloud infrastructures. – Deliver

unified data management with security, governance and control policies that are set once and

consistently enforced seamlessly across multiple analytic workloads running against the same

diverse data sets on fluid multi and hybrid cloud infrastructures. SDX creates a trusted, business-

ready foundation with consistent governance, protection, and compliance regardless of the location

or analysis of the data.

A core layer of CDP Private Cloud Base is Cloudera Shared Data Experience (SDX), with uniform

capabilities of Data, Schema, Replication, Security, and Governance. Cloudera SDX Shared Data

Experience includes the following capabilities:

https://www.hadoopexam.com/

 6

- Schema Automatic capture and storage of all schema and metadata definitions as platform

workloads use and create them.

- Replication Deliver data copies and data policies that the enterprise requires to work, with

complete consistency and security.

- Security Role-based access control applied consistently across the platform, including full

stack encryption and key management.

- Governance Enterprise-grade auditing, lineage, and governance capabilities applied across

the platform with rich extensibility for partner integrations.

Shared Data Experience (SDX)

Beyond all the integration between the three tenets of CDF, the most important element that makes

CDF a true platform is Cloudera Data Platform’s SDX. A powerful data fabric for complete security,
governance and control across infrastructures, providing ultimate deployment choice and flexibility.

Since all the components of CDF integrate tightly with SDX, you get a unified experience for security

(with Apache Ranger), governance (with Apache Atlas) and data lineage from edge-to-cloud.

Cloudera’s SDX is the shared data experience that provides the security, governance, lineage,

management, and automation to streamline this data journey for the public sector. It’s a single pane
of glass that manages all of those experiences – wherever employees are. An agency can set the

right governance and provide access to the right users and the right business unit. There is no other

solution in the industry that can offer this management today, and it is certified to run on Red Hat

OpenShift. Any existing Red Hat customer today running a containerized environment can take

advantage of these experiences for a more holistic data strategy

Meeting Enterprise Operational Needs with a Modern Platform

SDX is a set of shared open platform services built for multi-functional, multi-tenant, and/or multi-

disciplinary analytics that have been optimized for the cloud. This means that Cloudera Enterprise

offers a unified security model that helps protect sensitive data with a consistent set of controls, and

that it offers a consistent governance model that enables self-service secure access to all of your

relevant data. Not just one type of data, really to all of it, increasing your ability to be compliant,

particularly in a regulatory environment.

Catalog

Common pain points across analytics functions include users not being able to find relevant data, or

trust what they've found, or be able to access it without IT help. Sometimes they don't know the

lineage or history, sometimes the data is missing business context. Working with data in transient

environments in the cloud can be particularly challenging, as this information can be lost and will

need to be re-created again. A common scenario might be, "I see 10 tables called 'Customer

Accounts' - which one should I use?" SDX help you identify the table that is most popular, used by all

your team members, or characterized by other important attributes. The SDX shared data Catalog

helps to define and preserve the structure and the business context of all your data, regardless of

where it happens to reside, spanning on-premises, cloud object stores, structured, unstructured, and

semi-structured data. Business Catalog services (not just a Hive metastore) span all enterprise data

sets, schemas, collaborative tags, and business classifications, and are targeted for each type of user.

This is enhanced by key features such as technical metadata separation, typing, and validation, and

automated policybased definitions. Persisting this information, even for temporary cloud

environments makes everyone's life easier.

https://www.hadoopexam.com/

 7

Security and Governance

Another set of problems with traditional and alternative approaches is around security and

governance. Pain points here include incomplete or inconsistent controls, which lead to significant

financial and reputation risk. Trying to solve these through administrator eort alone is burdensome,

and likely won't meet industry and government regulations like GDPR, PCI DSS, or HIPAA. Security

should be an enabler, good security makes it easier to share, and avoid producing copies of data that

are either stripped down or unsafe. You might be thinking, ”when I add a new security policy, I need
it to immediately take eect for all workloads because my users use a mix of Apache Impala, Hive, and

Spark." Great, SDX provides that, too. Alternately, if security is too hard to configure, my users just

won't use it - they'll find a way to turn it o. SDX provides automatic configuration for encryption at

rest and wire encryption. You can keep key management safe in your own facility. Audit logs are

complete, immutable, and preserved, unlike a cloud provider that does them at 5 minute intervals

and discards after two weeks, or a Hadoop distribution that allows them to be disabled. Cloudera

Enterprise has a full complement of security features for compliance including encryption at rest and

in motion, authorization by role, audit logs as noted, visibility to classify data by sensitivity, and full

record updates or erasure upon request.

Lifecycle

Lifecycle management, often alongside partners, increases user productivity and boosts job

predictability, and includes functions like flexible data ingest and replication. This is supported by a

control plane handling multi-environment and multi-tenant cluster provisioning, deployment,

management, and troubleshooting, described below. As data silos cause so many problems already

detailed, SDX is really a core piece of how Cloudera separates from the legacy and unintegrated

competition.

Control Plane

Understanding that any piece of technology has requirements for administration, Cloudera

Enterprise is designed to minimize this tax on value. It includes many advanced features to monitor,

provision, and manage resources and workloads. Cloudera Manager in fact can handle up to 2,500

nodes in a single view. Cloudera Director facilitates managing cloud infrastructure. Cloudera Altus

automates many functions entirely, letting you focus on the jobs at hand. All of these include

support for rolling upgrades, automation of tasks, and normal housekeeping.

Cloudera SDX: Shared Data Experience for On-Premise, Cloud and Hybrid Deployments Cloudera

Shared Data Experience (SDX) creates a seamless integration of all analytic disciplines will full

security, governance and administration across any set of deployments: on-premise, cloud and

hybrid

SDX – The data access control layer that sits on top of the backend object store and provides

coherent data security and governance for all the applications running with the environment

https://www.hadoopexam.com/

 8

Cloudera SDX: Shared Data Experience

Cloudera SDX offers a modular software framework that ensures a shared data experience across all

deployment types, including multiple public clouds, private cloud, hybrid cloud, and bare metal

configurations. SDX applies stateful, centralized, and consistent data context services making it

possible for hundreds of different workloads to run against shared or overlapping sets of data. SDX

makes multi-disciplinary data applications easier to develop, less expensive to deploy and

increasingly important in today’s environment, more consistently secure. SDX is comprised of five

discrete functions that together solve a really hard problem — providing a shared data experience

for a platform that supports a diverse set of workloads and user interaction models.

- Shared Governance provides the ability to govern the data in a unified manner so users can

easily discover new data, understand where that data came from, and track how it has been

modified.

- Shared Security implements consistent, granular authentication, authorization, encryption,

and compliance controls in a unified manner across the entire platform.

- Shared Workload Management enables administrators to create, manage and optimize

workloads individually or as a collection and to allocate resources and assign workload

priority based on business requirements.

- Shared Ingest & Replication provide the ability to ingest data once and make it available to

all applications and users without additional ingest pipelines or copies of data, and to

replicate data on demand to remote locations or directly to the cloud.

- Shared Data Catalog provides a common catalog of schema and lineage metadata to each

workload and user accessing the platform for maximum efficiency and productivity.

Data Catalog

- Data Catalog is a service within Cloudera Data Platform that enables you to understand,

manage, secure, and govern data assets across the enterprise. Data Catalog helps you

understand data across multiple clusters and across multiple CDP environments. You can

search to locate relevant data of interest based on various parameters. Using Data Catalog,

https://www.hadoopexam.com/

 9

you can understand how data is interpreted for use, how it is created and modified, and how

data access is secured and protected.

Ranger

- Security policies across CDP can be created, modified and destroyed using Ranger Web

Interface.

Data Catalog enables data stewards across the enterprise to work with data assets in the following

ways:

- Organize and curate data globally

o Organize data based on business classifications, purpose, protections needed, etc.

o Promote responsible collaboration across enterprise data workers

- Understand where relevant data is located

o Catalog and search to locate relevant data of interest (sensitive data, commonly used,

high risk data, etc.)

o Understand what types of sensitive personal data exists and where it is located

- Understand how data is interpreted for use

o View basic descriptions: schema, classifications (business cataloging), and encodings

o View statistical models and parameters

o View user annotations, wrangling scripts, view definitions etc.

- Understand how data is created and modified

o Visualize upstream lineage and downstream impact

o Understand how schema or data evolve

o View and understand data supply chain (pipelines, versioning, and evolution)

- Understand how data access is secured and protected, and audit use

o Understand who can see which data and metadata (for example, based on business

classifications) and under what conditions (security policies, data protection,

anonymization)

o -View who has accessed what data from a forensic audit or compliance perspective

o -Visualize access patterns and identify anomalies

Get Full Version Contents from this link

https://www.hadoopexam.com/
https://www.hadoopexam.com/Cloudera_Certification/CCA159/What_is_cloudera_certifications_CCA131_CCA175_CCA159_CCPDE575_Exam.html
https://www.hadoopexam.com/Cloudera_Certification/CCA159/What_is_cloudera_certifications_CCA131_CCA175_CCA159_CCPDE575_Exam.html

 1

Contents
Chapter-17: Private Cloud Base HDFS Transparent Encryption .. 1

Overview ... 1

Architecture Overview .. 2

Encrypted data access ... 2

EDEKs, KeyProvider, KeyManagementServer ... 3

Private Cloud Base and Encryption ... 3

Design .. 8

KEY MANAGEMENT SERVER. .. 9

ENCRYPTED DATA ACCESS .. 9

Chapter-17: Private Cloud Base HDFS Transparent Encryption

Overview

HDFS Transparent Encryption safeguards Hadoop disc data. When a cluster's encryption is enabled,

write and read operations on encrypted zones (HDFS folders) are encrypted and decrypted

automatically. This method is "transparent" to the data-using programme. HDFS Transparent

Encryption doesn't effect user access to Hadoop data but may influence performance. The cluster

where you want to use HDFS Transparent Encryption must have Kerberos enabled. Cluster creation

requires Security Setup. On the Security page of the Create Cluster wizard, pick Security Setup:

Enabled. After creating a cluster, you can't activate Kerberos.

HDFS uses end-to-end encryption. Data read from and written to specific HDFS folders is

transparently encrypted and decrypted once setup. End-to-end encryption means only the client can

encrypt and decode data. HDFS never stores unencrypted data or keys. This meets both at-rest and

in-transit encryption needs (e.g. when data is travelling over the network).

Different levels of a standard data management software/hardware stack may be encrypted. Each

encryption layer has pros and cons.

• APP encryption. This method is secure and adaptable. The programme controls what's

encrypted and may represent user needs. Application writing is difficult. Existing

programmes without encryption can't use this feature.

• Encrypting databases. Comparable to application-level encryption. Database suppliers

provide encryption. Performance difficulties might arise. Indexes aren't encryptable.

• Encrypting filesystems. This alternative is high-performing and straightforward to

implement. Some application-level regulations can't be modelled. Multi-tenant apps may

encrypt by user. Each column in a database file may need separate encryption settings.

• Encrypting discs. High-performance and easy to install, yet inflexible. Physical theft only.

https://www.hadoopexam.com/

 2

Government, financial, and regulatory agencies demand data encryption. Health care has HIPAA,

card payments have PCI DSS, and the government has FISMA. HDFS's transparent encryption helps

enterprises comply with requirements.

By adding encryption into HDFS, existing applications may use encrypted data without modifications.

This architecture integrates encrypted file semantics with HDFS functionality. HDFS-level encryption

is between database-level and filesystem-level. It's beneficial. Existing Hadoop applications can

operate transparently on encrypted HDFS data. HDFS gives policymakers more context than

conventional filesystems.

HDFS-level encryption avoids filesystem- and OS-level attacks. Since HDFS encrypts the data, the OS

and disc only communicate with encrypted bytes.

Architecture Overview

HDFS's encryption zone provides transparent encryption. The contents of an encryption zone are

transparently encrypted when written and decrypted when read. Each encryption zone is generated

with a single key. Each encrypted file has its own key (DEK). HDFS doesn't handle DEKs. HDFS

exclusively handles encrypted key data (EDEK). After decrypting an EDEK, clients read and write data

using a DEK. HDFS datanodes view encrypted bytes.

Encrypting all files in a filesystem is a key use case of encryption. HDFS provides stacked encryption

zones so that various encryption zone keys may be used in different portions of the filesystem. After

creating an encryption zone (e.g. on /), a user may build additional with different keys on

descendent directories (e.g. /home/alice). The file's EDEK is produced using its ancestor's encryption

zone key.

Hadoop Key Management Server manages encryption keys (KMS). KMS has three main roles in HDFS

encryption:

1. Encryption zone key storage

2. Creating new NameNode encryption keys

3. Decrypting HDFS client encryption keys

Below, we'll explain the KMS.

Encrypted data access

NameNode requests a new EDEK encrypted using the encryption zone's key when creating a new

file. EDEK is saved as file metadata on NameNode. When reading a file in an encryption zone, the

NameNode supplies the client with the file's EDEK and encryption zone key version. The client

queries the KMS to decode the EDEK, which requires validating authorization to access the

encryption zone key version. If it works, the client decrypts the file using the DEK.

All of the aforementioned read and write route stages happen automatically via DFSClient,

NameNode, and KMS interactions. HDFS filesystem permissions govern access to encrypted data and

https://www.hadoopexam.com/

 3

metadata. If HDFS is breached, a malicious user only has access to ciphertext and encrypted keys.

Since KMS and key store permissions govern access to encryption zone keys, this is not a security

risk.

EDEKs, KeyProvider, KeyManagementServer

The KMS acts as a proxy between HDFS daemons and clients and a key store. Both the key store and

KMS implement Hadoop's KeyProvider API. For more, see KMS documentation. Each encryption key

in KeyProvider has a unique name. Each key version has its unique key material since keys may be

rolled (the actual secret bytes used during encryption and decryption). A key may be obtained by

name, which returns the newest version, or by version.

The KMS can create and decode encrypted encryption keys (EEKs). KMS creates and decrypts EEKs.

The client requesting EEK generation or decryption never touches the key. The KMS produces a

random key, encrypts it with the provided key, and provides it to the client. KMS verifies if the user

has the encryption key, decrypts the EEK, and returns it.

EEKs are encrypted data encryption keys (EDEKs) utilised by HDFS to encrypt and decode file data.

Typically, the key store only lets end users access DEK-encrypting keys. The HDFS user won't have

access to unencrypted EDEKs, thus they may be securely stored and managed.

Configuration

KMS instance and key store are required. After setting up a KMS and configuring the NameNode and

HDFS clients, an admin may use the hadoop key and hdfs crypto command-line tools to produce

encryption keys and encryption zones. Using technologies like distcp, existing data may be

encrypted.

Private Cloud Base and Encryption

Encrypting data at rest is a desired or sometimes essential requirement for data platforms in

HealthCare, Financial, and Government enterprises. The feature protects sensitive data from internal

and external attacks. Apache Ranger manages HDFS data. Administrators oversee HDFS activity

through regulations and audit logs. Any HDFS admin or root user on cluster nodes might mimic

"hdfs" and access sensitive data in plain text. HDFS Encryption protects transparent text. This

method ensures the safety of sensitive and personal data that, if disclosed in an accidental or

deliberate breach, would harm both people (customers, workers, partners) and the company as a

whole.

HDFS Encryption encrypts data at rest transparently end-to-end. Only the client encrypts and

decrypts end-to-end data. Until it reaches the HDFS client, data is encrypted. Each HDFS file is

encrypted. Encryption keys are kept in file metadata to avoid performance bottlenecks caused by

managing millions of keys. The file encryption key is encrypted using another "encryption zone key"

for further protection.

Easy configuration. Ranger's key management rules govern decryption access to HDFS data. HDFS

Native encryption works with Protegrity Tokenization, which tokenizes and detokenizes encrypted

HDFS data according on Protegrity ESA server settings. Ranger's dynamic column masking

capabilities include redacting, hashing, and masking data on top of encrypted HDFS data for further

protection.

https://www.hadoopexam.com/

 4

HDFS encryption paired with column masking capabilities by Ranger and/or Protegrity protects data

t rest, across the network, and via permission controls.

Encryption/Decryption Flow:

Documentation and publications describe how HDFS encrypts data. Here's the fundamental flow:

Encryption:

1. To encrypt HDFS files, build an EZK.

2. This is an empty HDFS folder attached with an EZK.

3. Every HDFS encrypted file gets a data encryption key (DEK).

4. DEK encrypts the file.

5. EZK encrypts DEK to create an encrypted data encryption key (EDEK).

6. Each file's metadata has an EDEK.

Decryption:

1. Accessing an encrypted file needs "DECRYPT" on the appropriate EZK.

2. "hdfs dfs -cat" generates a KMS API request to check "DECRYPT" access.

3. EZK decrypts EDEK if the user has access.

4. The DEK decrypts the file to show the user.

The following figure demonstrates how HDFS utilises Key provider API to decode EDEK and access

file contents:

https://www.hadoopexam.com/

 5

The graphic below depicts the relationship between EZK, DEK, and EDEK.

Installing:

HDFS Native Encryption depends on Ranger KMS to create encryption zone keys and permission

rules to provide ENCRYPT, DECRYPT access. Ranger KMS must be installed and configured to allow

HDFS Native Encryption.

Ranger KMS requires a backend to hold encryption zone keys. Cloudera Manager provides two ways

to install Ranger KMS:

1. RDBMS-supported Ranger KMS.

2. KTS backs Ranger KMS.

Cloudera Manager simplifies configuring both.

Encrypt HDFS at Rest:

In Cloudera Manager (CM), click "Clusters" and then "mycdp"

Click "Actions" and "Set up HDFS Data at Rest Encryption"

https://www.hadoopexam.com/

 6

"Setup HDFS Data At Rest Encryption" in Cloudera Manager's UI offers three options:

• Ranger KMS/RDBMS.

• Ranger KMS/KTS

• Keystore file-based.

This screenshot displays all three options:

https://www.hadoopexam.com/

 7

Choosing the first option in the screenshot, "Ranger Key Management Service powered by Key

Trustee Server," invites Cloudera Manager to fulfil a few requirements and set up KTS infrastructure.

The following should be done before activating HDFS Data at Rest Encryption:

• Activate kerberos.

• Activate TLS/SSL.

KTS infrastructure may be established two ways:

• Add KTS cluster (helps manage KTS infrastructure outside the cluster, and it is a best practise

as well).

• Parcelize KTS (it requires parcels to be downloaded from archive.cloudera.com, and

configure into CM).

Once KTS is in place,

• Select "Add service" on Cloudera manager's UI to add KTS.

• Select "Add service" on Cloudera Manager UI to add Ranger KMS with Key Trustee Server.

https://www.hadoopexam.com/

 8

HDFS encryption can:

• HDFS clients may encrypt/decrypt data.

• HDFS doesn't handle keys. HDFS can't read unencrypted data or keys. HDFS and key

administration are independent user roles (HDFS administrator, Key Administrator),

guaranteeing no one user has full access to both data and keys.

• The OS and HDFS communicate utilising encrypted HDFS data, minimising OS and file-system

vulnerabilities.

• HDFS employs AES-CTR encryption. AES-CTR offers a 128-bit encryption key (default) or 256-

bit when maximum strength JCE is enabled.

• HDFS encryption uses the AES-NI instruction set, a hardware-based encryption accelerator,

thus setting encryption shouldn't effect cluster performance. The AES-NI instruction set is

quicker than software implementations. To utilise the acceleration technique, you may need

to upgrade HDFS and MapReduce cryptography libraries.

Design

HDFS encryption has special issues. Distributed filesystems prioritise performance and scalability.

Transferred data must be encrypted. As HDFS is a multi-user system, we must be cautious not to

disclose sensitive information to other users, especially administrators with HDFS superuser access

or cluster root shell access.

https://www.hadoopexam.com/

 9

All of the following must happen without changing user application code for transparent encryption.

Encryption must support WebHDFS, HTTPFS, FUSE, and NFS.

KEY MANAGEMENT SERVER.

HDFS integration with Cloudera Navigator Key Trustee was a design objective. Most keystores aren't

built for Hadoop workloads and lack a consistent API. We created Hadoop Key Management Server

for these reasons (KMS).

The KMS operates as a proxy between cluster clients and a keystore, offering Hadoop's KeyProvider

interface through REST API. Any keystore with the needed capabilities may be included into the

KMS.

KMS doesn't store keys (other than temporarily in its cache). The corporate keystore must be the

official key storage and guarantee that keys are never lost, since a missing key destroys data. For

production, install two or more enterprise key stores.

The KMS enables ACLs that granularly regulate key access and actions. This functionality may be

used to limit NameNode and DataNode's access to keys.

ENCRYPTED DATA ACCESS

The new design provides an encryption zone (EZ), a directory in HDFS whose contents are

automatically encrypted on write and decrypted on read. Encryption zones start off empty and

cannot be renamed into or out of. A EZ's contents are always encrypted.

https://www.hadoopexam.com/

10

When creating an EZ, the administrator provides a key from the backing keystore. The EZ Key

encrypts the file encryption keys (DEKs). DEKs are encrypted with the EZ key to produce EDEK, which

is saved on the NameNode through a file attribute (1).

The client obtains a new EDEK from the NameNode and requests the KMS to decode it using the EZ

key. This creates a DEK (2) that the client may use to encrypt data (3).

To decrypt a file, the client must decode its EDEK using the EZ key (2). The client decrypts encrypted

data using DEK (4).

https://www.hadoopexam.com/

11

The graphics above explain how to encrypt a file. Important is the background-populated per-EZ

EDEK cache on the NameNode. This avoids calling the KMS for each creation call. Note that HDFS

never handles the EZ key directly; KMS generates and decrypts EDEKs.

https://www.hadoopexam.com/

12

https://www.hadoopexam.com/
https://www.hadoopexam.com/Cloudera_Certification/CCA159/What_is_cloudera_certifications_CCA131_CCA175_CCA159_CCPDE575_Exam.html

 1

Contents
Chapter-23: Cloudera Data Engineering for CDP-0011 Certification .. 2

CDP Data Engineering (CDE) ... 2

Cloudera Data Engineering ... 3

Components for CDE Services ... 5

Apache Airflow and Data Pipeline .. 9

Cloudera Data Engineering Use Cases .. 9

Data Engineering at Scale ... 10

Data Engineering Lifecycle .. 10

Data Collection & Acquisition Steps .. 11

Data Acquisition .. 11

Data Aggregation .. 11

Data Cleansing Steps ... 12

Data Sampling and Selection .. 12

CDP Airflow ... 12

https://www.hadoopexam.com/

 2

Chapter-23: Cloudera Data Engineering for CDP-0011 Certification

CDP Data Engineering (CDE)

Data Engineering provides a complete data processing solution, powered by Apache Spark and

Apache Hive. Spark and Hive enable fast, scalable, fault-tolerant data engineering and analytics over

petabytes of data.

This Data Engineering template includes a standalone deployment of Spark and Hive, as well as

Apache Oozie for job scheduling and orchestration, Apache Livy for remote job submission, and Hue

and Apache Zeppelin for job authoring and interactive analysis.

CDP Data Engineering is a powerful Apache Spark service on Kubernetes and includes key

productivity enhancing capabilities typically which are not available without basic data engineering

services. This provides

- GUI based monitoring, performance tuning and troubleshooting for faster problem

resolution.

- It also has native Apache Airflow and robust APIs for orchestrating and automating job

scheduling and delivering complex data pipeline anywhere.

- It provides resource isolation and UI based job management.

- It provides CDP data lifecycle integration and SDX security and governance.

Cloudera Data Engineering (CDE) in CDP Private Cloud is intended to be installed and used in locally

hosted information technology settings. Additionally, the business revealed that CDE is now

compatible with the Amazon Elastic Compute Service (ECS) cloud platform in addition to the Red Hat

OpenShift platform, which is based on Kubernetes.

On top of Kubernetes clusters, the Cloudera public cloud version of CDE is used to install the Apache

Spark framework for the purpose of doing data analysis. IT and software development teams can

now construct applications on either a public or a private platform, and then run those applications

https://www.hadoopexam.com/

 3

across a hybrid cloud computing environment. This is accomplished by first shifting workloads, and

then utilizing tools such as Cloudera Replication Manager to migrate data when it is necessary.

IT & Software Developer teams can programmatically deploy complex pipelines with job

dependencies using Apache Airflow, open source software based on directed acyclic graphs (DAGs)

that makes it possible to visualize and monitor pipelines running in production environments.

It is becoming more apparent, as Kubernetes gains more widespread use, that the administration of

compute, data, and applications will eventually converge around a single control plane. It is possible

that those tasks will still need to be managed by a group of IT experts, but the days in which IT teams

were required to install a distinct control plane for each function are drawing to a close. As the

number of stateful apps that are deployed on Kubernetes clusters continues to gradually expand,

this control plane offers not only the means to combine DevOps and data operations but also

provides the control itself.

The CDP Data Engineering service is the only cloud-native offering that was developed specifically for

the needs of business data engineering teams. Data Engineering is an all-inclusive data engineering

toolset that is built on Apache Spark. It enables orchestration automation with Apache Airflow,

advanced pipeline monitoring, visual troubleshooting, and comprehensive management tools to

streamline ETL processes across enterprise analytics teams. Data Engineering is built on Apache

Spark.

Data Engineering is completely integrated with Cloudera Data Platform, allowing end-to-end

visibility and security with SDX and smooth interactions with CDP services like Data Warehouse and

Machine Learning. CDP Data Engineering enables uniform, repeatable, and automated data

engineering procedures wherever.

Cloudera Data Engineering

Cloudera Data Engineering or CDE is a serverless service for CDP using which we can submit Spark

jobs to an auto-scaling cluster, you don’t have to worry about, how cluster to be created in Cloud.
This service is available in both the form factor whether is public cloud or private cloud deployment.

CDE is a service in CDP Private Cloud Data Services allows you to submit jobs to auto-scaling clusters.

In fact, you can create, manage and schedule Apache Spark jobs without the overhead of creating

and maintaining Apache Spark clusters. With the CDE, you define virtual clusters with a range of CPU

and memory resources and the virtual cluster scales up and down as needed to run your Spark

Workloads.

https://www.hadoopexam.com/

 4

Data Engineers who are using Apache Spark, CDP CDE offers an inclusive toolset that enables data

pipeline orchestration, automation, advanced monitoring, visual profiling and comprehensive

management toolsets for streamlining ETL processes and making complex data actionable across

your analytics.

Apache Airflow-based pipeline orchestration for Cloudera Data Platform (CDP) with scalable Spark

and Hive transformations. DE, DW, and ML practitioners may build curated datasets for downstream

applications using Spark and Hive. A managed Airflow service schedules and orchestrates pipelines

without the expense of implementing an external scheduling service. Customers solely pay for

computational infrastructure.

Customers may now configure their data pipeline using a simple python configuration file. The steps

may be a combination of hive and spark operators that conduct tasks on CDW and CDE, with SDX

providing security and governance. Job sequencing may involve retries, dependencies, and

conditional branching. Customers may now design modular data transformation stages that are

more reusable and simpler to debug, which can be coordinated with glueing logic at the pipeline

configuration level instead of buried in code. With CDW, we've created a new processing mode that

mimics Hive on Tez for ETL workloads, combining containerization and dedicated resources.

As data pipelines expand in complexity, size, and breadth, being agile depends on the solution's

strength and adaptability. Most production data pipelines have one or more of these flaws.

- Hard to scale, particularly multi-stage conversions.

- Lack of automation to achieve SLAs with high-quality data sets.

- Limited insight into data pipeline health and progress.

- Difficult to diagnose and solve pipeline faults.

- Harmonize data pipeline and downstream application security standards.

- Incomplete lineage of source-to-target data pipelines.

CDE is the first cloud-native solution developed for corporate data engineering teams building

complicated, dependable data pipelines at scale and across LOBs. CDE is an all-inclusive data

https://www.hadoopexam.com/

 5

engineering solution that automates orchestration, monitors pipelines, provides visual debugging,

and streamlines ETL procedures for business analytics teams. CDE addresses the problems noted

previously, notably in end-to-end workflows, by combining Apache Spark, Apache Hive, Apache

Airflow, and Apache Atlas to enable:

- Complex data processing using data frames, SQL, or low-level distributed data sets ensures

dependable multi-stage transformations at scale.

- Built-in monitoring and troubleshooting tools for pipeline concerns.

- Robust orchestration with Airflow provides flexible flows of Spark and Hive integration and

transformation processes leveraging recent advancements such as big query isolation in

CDP's Data Warehouse service.

- Reliably and swiftly implement end-to-end LOB processes with CDP's Data Flow, Data

Warehousing, and Machine Learning services.

- Integrated with CDP common services like as SDX and Workload Management to deliver

unified security standards, lineage traceability for end-to-end processes, and optimum data

pipeline health.

- Spark can integrate with several 3rd party data sources to create a large library for CDE.

Common databases (redshift, snowflake, mongo, hbase) and file formats (avro, parquet,

ORC, csv) are included here.

- ISV interaction through CDE APIs (latest partner integration blog).

Components for CDE Services

• Environment

This is a logical subset of your private cloud deployment, including a datalake and multiple compute

resources.

• CDE Service:

CDE Service is a subset of the long-running Kubernetes cluster and services that manage the virtual

clusters. The CDE service must be enabled on an environment before you can create any virtual

clusters.

• Virtual Cluster

An individual auto-scaling cluster with defined CPU and memory ranges. Virtual Clusters in CDE can

be created and deleted on demand. Jobs are associated with Clusters.

• Job

This is your application code, configuration and resources. Jobs can be run on demand or scheduled.

An individual Job execution is called a Job-run.

Resources: A resource in CDE is a named collection of files which used by a Job. Resources can

include

- Application Code

- Configuration files.

- Custom Docker Image

- Python virtual environment specifications (requirements.txt)

https://www.hadoopexam.com/

 6

Resources are associated with virtual clusters. A resource can be used by multiple jobs., and a single

job can use multiple resources. The resource type which are supported by CDE include files and

python-env.

Files: These are the files which a job can refer. This includes application code, configuration files and

supporting libraries. You can upload and remove new files as needed.

Python-env: This is a defined virtual Python environment that a job runs in. The only file you can

upload in python-env is requirement.txt file. When you associate a python-env resource with a job,

the job runs within a Python virtual environment built according to the requirement.txt

specifications.

Custom-runtime-image: This is a Docker container image, when you run a job using a custom-

runtime-image resource, the executors that are launched use your custom image.

• Job run

As discussed above this is an individual job run.

CDE Prerequisites

 If you want to use CDE on CDP Private Cloud, you must have followed requirement fulfilled.

Apache Ozone: The CDP Private Cloud Base cluster must have Apache Ozone service enabled, if you

want to use CDE in CDP Private Cloud Base.

OpenShift Container: For CDE Private Cloud running on Red Hat OpenShift Container Platform (OCP),

you must configure a route admission policy.

CDE Supported Jobs

- In Cloudera Public Cloud, currently CDE supports the Scala, Java and Python Jobs.

- When you create a Cloudera Data Engineering (CDE) service, you specify an instance type

(size) and auto-scale range of instances. Virtual clusters associated with the CDE service use

CPU and memory resources as needed to run jobs. When more resources are required,

virtual machines of the specified instance type are started. When resources are no longer

required, instances are terminated.

- CDE allows you to create, manage, and schedule Apache Spark jobs without the overhead of

creating and maintaining Spark clusters.

- In addition to this, you can define virtual clusters with a range of CPU and memory

resources, and the cluster scales up and down as needed to execute your Spark workloads,

helping control your cloud costs.

CDE Jobs Example

Example-1: You can read network access logs stored in S3, extract the whole data and inserts into an

Hive table and then this data you can use in your Downstream process.

CDE Job Scheduling & Deployment

- You can run job ad-hoc basis or schooled basis.

- If you have already built your Spark code in your laptop, this can be deployed as CDE job

with just a single click.

https://www.hadoopexam.com/

 7

- You can use a simple wizard where you can define all the key configuration of your job.

- DE supports, Scala, Java and Python Jobs.

- Cloudera kept in mind that, there should be less number of fields required to run a job and

exposed all the typical configurations data engineers needed or expected. For example

o Runtime Arguments

o Overriding Default Configurations

o Including Dependencies (this can be Jars, config files or python egg files). Resources

are managed as single entity and called resource.

o Behind the scenes resources has proper versioning to ensure that whenever the job

run, the correct dependencies are available.

o Resources are automatically mounted and available to all Spark executors alleviating

the manual work of copying files on all the nodes.

o Applying Resource Parameters.

- As you can see below

-

Apache Airflow

- Once Job is defined CDE job, its execution is handled by Apache Airflow.

- Cloudera Data Engineers introducing a completely new orchestration service backed by

Apache Airflow.

- Airflow allows you defining pipelines using Python code that are represented as entities

called DAGs.

https://www.hadoopexam.com/

 8

- CDE automatically takes care of generating the Airflow python configuration using the

custom DE operator. As you can see below

- With Apache Airflow, Data Engineers can use many of the hundreds of communities

contributed operators to define their own pipeline.

- This will allow defining of custom DAGs and scheduling of jobs based on certain event

triggers like an input file showing up in an S3 bucket.

Apache Spark

- Apache Spark has become the de-facto processing framework for ETL and ELT workflows.

- However, we need to optimize it correctly, since it can become challenging and resource

intensive.

- Usually, Spark typical workload in Hadoop context is Hadoop clusters with YARN running on

VM or physical servers.

- Alternative deployment is Apache Spark on Kubernetes, which also requires considerable

effort to setup, manage and optimize performance.

- Usually, Data Engineers, who want to deploy Apache Spark in public cloud are looking for

ephemeral compute resources that auto scale based on demand. CDP Public Cloud has this

option available via Data Hub Clusters, which provide Hadoop cluster form-factor that can

then be used to run ETL jobs using Spark.

- Data Hub Clusters: It was observed that the majority of the time the Data Hub clusters are

short lived, running for less than 10 minutes.

- Apache Spark clusters has the ability to scale up and down on-demand and well suited for

containerization based on Kubernetes. In fact, they are also portable across cloud providers

and hybrid deployments.

- CDP DE is architected with this keeping in mind, which offering a fully managed and robust

serverless Spark service for operating data pipelines at scale.

Kubernetes

- Leveraging Kubernetes to fully containerize workloads , DE provides a built-in administration

layer that enables one click provisioning of autoscaling resources with guardrails, as well as a

comprehensive job management interface from streamlining pipeline delivery. Which is

depicted as below

https://www.hadoopexam.com/

 9

Because modularity and portability are two of the most important aspects of CDE, and its primary

emphasis was on developing a service that is fully managed and production ready for Spark on

Kubernetes. Because of this, CDP is able to create storage and computation layers that were

disaggregated and could scale independently according to the needs of the workload.

Apache Airflow and Data Pipeline

Data pipelines are made up of a number of different phases, each of which may have dependencies

or triggers. A versatile orchestration platform, such as Apache Airflow, that provides simpler

automation, dependency management, and customization is required to satisfy the ever-evolving

requirements of businesses of all sizes. While alleviating the traditional operational management

overhead of security and availability, packaging Apache Airflow and exposing it as a managed service

inside CDE enables data engineers to plan and monitor multi-step pipelines using a task

management API.

Cloudera Data Engineering Use Cases

1. To fulfil the requirements for mission-critical analytics, you may orchestrate complicated

data transformation processes supported by Apache Airflow and including hundreds of

operators.

2. Containerized, scalable, and portable, with separated workload environments and

guardrails, Data Engineering enables safe pipeline management with on-demand elastic

computing to satisfy business SLAs in the most cost-effective manner possible.

3. During the debugging process, it is helpful to see performance metrics like as CPU, memory,

and I/O across all phases of your Spark operations. This will allow you to locate performance

bottlenecks and find the needle in the haystack.

https://www.hadoopexam.com/

 10

4. Utilize a powerful task management interface by means of a command-line interface (CLI)

and REST APIs to easily automate and connect with pre-existing processes such as CI/CD

pipelines and third-party applications.

5. A fully integrated Spark on Kubernetes service is provided by Data Engineering. This service

automates and optimises artefact management, security, and resource scheduling by using

Apache Yunikorn to provide FIFO and GANG scheduling.

6. Platform administrators are able to control access and security from a single interface, then

swiftly provision new workloads while simply monitoring capacity and visualising resource

utilisation over time. SDX also offers complete lifecycle lineage tracing, which makes it

possible to discover the origin of data and determine its destination.

Data Engineering at Scale

- Apache Spark is the extract/transform/load (ELT) framework of choice, but there's a catch

for commercial users. Apache Spark helps data engineers handle enormous data volumes in

real time. Its ability to expedite data intake, exploration, modelling, curation, and

categorization allows users develop batch or streaming pipelines fast. Spark's processing

power isn't without physical labor. ETL tasks are resource- and time-intensive and might

affect analytical procedures. When a data pipeline is ready for deployment, you must

allocate resources, plan for it, and schedule it. Even after deployment, you must verify the

proper dependencies are in production and monitor the task for errors.

- Debugging or tuning the work will cost time, resources, and headaches. To uncover a

bottleneck or underlying problem, you must manually acquire and examine logs. When it's

time to update Spark, the whole cluster must be brought down, halting operations.

- Spark can handle massive data volumes quickly, but it challenges with good data engineering

at scale, which hurts advanced analytics projects.

- Building, implementing, and maintaining data pipelines requires a simplified, safe approach

to data integration, modelling, optimization, quality, governance, security, and reusability.

- CDP Data Engineering (DE) simplifies data pipelines for business analytics and machine

learning using Spark. DE streamlines your data pipeline management lifecycle, speeding

corporate data from input to insight.

- DE can process data at any scale since it's containerized and multi-cloud portable.

Autoscaling workload resources eliminates manual provisioning. This regulates expenses and

guarantees work resources when demand rises.

Data Engineering Lifecycle

Data preparation and curation are equally important data lifecycle steps. Data preparation solutions

for machine learning ensure that the data used to train models is clean, accurate, comprehensive,

and relevant. AI-relevant data preparation includes:

- Select Data: You will want to check that the data chosen are accurate. Be careful to provide

a reason for including or excluding certain pieces of data in your analysis.

- Clean Data: In most cases, the data that is compiled from a wide variety of sources does not

arrive in an organized way. Data cleaning comprises updating or removing inaccurate data,

anonymizing data, decreasing all types of data noise, and standardizing formats across

various data sources.

- Construct Data: Record Attributes Derived from Generated Records

https://www.hadoopexam.com/

 11

- Integrate Data: You need to combine the data that has been gathered from a variety of

different sources.

- Format Data: Standardizing file formats across various data sources is something that has to

be done in order for machine learning algorithms to correctly utilise the data that you

provide (data types, fields, matched formats, currency or metric conversions, etc.).

- Dataset: You need to make sure that your datasets include up-to-date and correct

information rather than outdated, archaic, or irrelevant information that might potentially

contaminate the ensuing models. If you are going to employ a sub-section of your data,

ensure that you have a description of the dataset that was applied to the analysis.

Data Collection & Acquisition Steps

- Big data drives AI. Big data and the know-how and infrastructure to handle it are driving the

AI renaissance. In the past, AI progress stagnated due to restricted data sets, lack of

representative sample data, and inability to cope with lots of data. Today's corporations

have real-time, infinite data with machine learning capacity.

- Big data has taught us the 4 V's of data:

o Volume: How to manage terabytes of resting data.

o Velocity: Here's how to swiftly handle streaming data.

o Variety: How to manage organised, unstructured, text, multimedia, and more data.

o Veracity: How to handle inconsistent, partial, unclear, late, and approximated data.

Data Acquisition

Data engineering is a group of tools for moving, manipulating, and operating on massive data

collections. Data engineering technologies stem from decades-old Extract-Transform-Load (ETL)

techniques. AI-relevant ETL features include:

- Extracting useful data from existing data stores, data lakes, data warehouses, and other

structured and unstructured information repositories for machine learning model training

data sets or support.

- Transforming data using rules or combination logic to build, create, and maintain machine

learning models.

- Loading converted data into the proper repository and format for machine learning model

development, training, and maintenance.

Many firms process huge data in the cloud. ETL data and real-time streaming data are delivered to

the cloud rather being stored locally. This improves a company's flexibility, agility, dependability, and

security.

Data Aggregation

Combining data from numerous sources is a fundamental stage in data collecting for training

machine learning models. This entails collecting and integrating structured and unstructured data

from numerous sources.

Key data aggregation steps include:

- Identifying structured and unstructured data sources to support machine learning.

- Determining missing information that can be merged from multiple sources.

- Determining varying data quality levels from multiple data sources and merging rules.

- Creating data pipelines to facilitate data aggregation and merging.

https://www.hadoopexam.com/

 12

Data Cleansing Steps

Data purification is required for training machine learning models. When cleaning dats, take these

steps:

- Formatting: Standardizing data formats (data types, fields, matched formats, currency or

metric conversions, etc.)

- Replacing incorrect data: During the cleaning step, erroneous information is removed.

- Enhancing / Augmenting Data:

o Add precalculated dimensions. Gather essential data.

o Add third-party data.

o "Multiply" image-based training data sets.

- Removing extraneous information and de-duplication: To enhance training, remove

irrelevant data. Pixelating pictures.

- Noise reduction and Disambiguation: Reduce information, visual, and aural noise.

- Data anonymization: Remove PII before feeding models.

- Normalizing Data: Standardize data across areas to improve training.

- Data sampling: Extract a large representative subsample for ML training from huge data

sources.

Data Sampling and Selection

- Two types of data filtering are required for machine learning. ML-related information. First,

Data Sampling, especially for large Big data. Data Attribute trimming reduces size and

complexity.

- Data Sampling: For huge data sets, extract a representative subsample for ML training. You

don't require a Terabyte, Petabyte, or larger dataset for training. You should choose a

representative, large sample that is data-balanced and free of unintended or purposeful

informational biases.

- Data Attribute Pruning: You don't require every record's data field, attribute, or metadata.

Remove extraneous data that bloats the data set and hampers ML model training.

CDP Airflow

Take a typical BI reporting use case. Users must consume data, convert it using quality checks, and

improve visual analytics tool querying.

Each stage may be a separate task, enabling modular development. Data loading and quality checks

may be combined into one Spark operation. The optimize phase might use Hive's materialized view

to speed up BI reporting. Airflow's modular design lets us maximize the CDP platform. We created

unique Airflow operators to exploit CDP's CDE and CDW analytical skills.

Users may create Airflow pipelines in their IDE of choice using a simple python setup file and then

submit them to a DE Virtual Cluster using the same APIs via CLI, REST, or UI (VC). Users may execute

Hive tasks in CDW or Spark jobs in CDE utilizing two CDP operators. Using the new CDP operators

https://www.hadoopexam.com/

 13

only a few basic setup lines that abstract away traditional complications like security while offering

critical schedule management features like retries, SLA, and alarms.

https://www.hadoopexam.com/

 1

Contents
Chapter-26: Cloudera DataFlow ... 1

Overview ... 1

Cloudera DataFlow Key characteristics ... 3

DataFlow Cloudera principles. .. 4

Use Case .. 5

Chapter-26: Cloudera DataFlow

Overview

Watch Below Video

Cloudera DataFlow (CDF), previously Hortonworks DataFlow (HDF), ingests, curates, and analyses

data for insights and actionable information. Cloudera DataFlow Deployments offers a cloud-native

runtime for Apache NiFi flows on auto-scaling Kubernetes clusters with centralised monitoring and

alerting. DataFlow Functions offers a cloud-native runtime to execute Apache NiFi flows as functions

on AWS Lambda, Azure Functions, and Google Cloud Functions, targeting use cases that don't need

always-running NiFi flows.

https://www.hadoopexam.com/
https://www.youtube.com/watch?v=k-PbR0VJ6do

 2

Cloudera DataFlow for the Public Cloud (CDF-PC) connects to any data source, processes it, and

delivers it to any destination using Apache NiFi. Design streaming ingest pipelines that send edge

data to Snowflake, Confluent, and Cloudera Data Platform (CDP).

CFM is a no-code Apache NiFi data intake and management solution. CFM provides scalable data

transportation, transformation, and administration using NiFi's graphical interface and processors.

CFM has two parts:

NiFi-Apache: The main data intake engine provides processors for connection, transformation, and

content routing.

Apache NiFi Registry: NiFi's companion for DevOps-style flow file creation and deployment. It

provides flow versioning, flow deployment, and flow promotion.

CDF-PC is a cloud-native universal data distribution service powered by Apache NiFi that lets you

connect to any data source, analyse, and transmit data to any destination.

Cloudera DataFlow for the Public Cloud (CDF-PC) uses a two-tier architecture where product

capabilities like the Dashboard, Catalog, and Environment management are hosted on the CDP

Control Plane and flow deployments processing your data are provisioned in a CDP environment

representing infrastructure in your cloud provider account. Find out how CDF-service PC's

architecture helps users reach their objectives.

DataFlow establishes a Kubernetes cluster, Kubernetes Operators, and the DataFlow workload

application in your cloud account when you activate DataFlow for one of your registered CDP

environments. Users may install Flow Definitions once DataFlow is enabled. Flow Definition

deployment establishes a specialised NiFi cluster on Kubernetes so NiFi flows may be treated as

independent deployments.

Flow installations handle cloud data using NiFi flow logic. Flow deployment data doesn't cross the

CDP Control Plane. Flow installations transmit heartbeats carrying health and performance data to

the Control Plane.

DataFlow Functions lets you deploy DataFlow Catalog NiFi flows as AWS Lambda, Azure Functions, or

Google Cloud Functions. DataFlow Functions don't need CDP DataFlow. DataFlow functions

communicate with the Control Plane to obtain flow definitions and deliver monitoring data. CDF-PC

lets you execute NiFi flows on Kubernetes clusters, enabling efficient scalability. In certain

circumstances, DataFlow Functions are preferable. Apache NiFi offers a no-code UI for constructing

and executing functions quickly using DataFlow Functions, a CDF-PC extension.

DataFlow Deployments offers a cloud-native runtime for Apache NiFi flows on Kubernetes. It enables

centralised monitoring and alerting, improving developers' SDLC. DataFlow requires a Kubernetes

cluster (or CDF environment) and at least one always-running virtual machine. Additional resources

will be added based on your needs and flow use. TCO includes cloud provider and Cloudera charges.

The cloud provider's expenses include operating Kubernetes via its native service and are based on

virtual machines. Cloudera's prices are based on Concurrent User (CCU) pricing for operating flows,

which is time-based.

DataFlow Functions is a cloud-native runtime for Apache NiFi flows on three serverless cloud

providers (AWS Lambda, Azure Functions, and Google Cloud Functions). It's especially strong when

https://www.hadoopexam.com/

 3

the flow doesn't need up-and-running NiFi resources. Use cases include event-driven object store

processing, serverless microservices, IoT data processing, asynchronous API gateway request

processing, batch file processing, and task automation using cron/timer scheduling. For these use

situations, NiFi flows require a start and finish. A file landing in an object storage, a cron event

starting, a gateway endpoint being called, etc. triggers the start. The cloud provider only allocated

resources for the flow's trigger event processing period. The TCO includes the cloud provider's

expenses based on the quantity and duration (in milliseconds) of resources supplied with function a

and Cloudera's charges based on the number of function invocations and execution time if

processing a single event takes more than one second.

Cloudera DataFlow Key characteristics

CDF-PC is a cloud-native universal data distribution service powered by Apache NiFi that lets you

connect to any data source, analyse, and transmit data to any destination. See below for

characteristics and functions.

Flow and resource isolation

CDF isolates data flows and guarantees resources for each without needing additional NiFi clusters.

CDF generates an auto-scaling NiFi cluster for each flow deployment using shared Kubernetes

resources. Flow deployments may grow independently, letting you isolate them and distribute

resources as required. Flow isolation may guarantee resources for a particular data flow or separate

failure zones.

Auto-scaling flow deployments

CDF scales Apache NiFi data flows. Flow deployments scale depending on CPU use within the

deployment wizard's limits. CDF scales flow deployments by adding or deleting NiFi pods on the

Kubernetes cluster as required and scaling the cluster within DataFlow-specified constraints.

ReadyFlows speed up flow deployment.

ReadyFlows may be easily deployed with little setup. ReadyFlows simplify typical data flow use

cases.

DataFlow-powered serverless NiFi flows.

DataFlow Functions lets you deploy NiFi flows as serverless functions on AWS Lambda, Azure

Functions, and Google Cloud Functions. DataFlow Functions addresses use cases that don't need

continually running NiFi flows, enabling developers to concentrate more on business logic, and

offers a serverless pay for value paradigm.

Central dashboard, KPIs.

One dashboard lets you monitor flow deployments across environments and cloud providers. Define

KPI alerts for your flow deployments to monitor performance data.

Interconnectivity.

NiFi's broad processor library lets you connect to any data source or destination, including on-

premise data sources, cloud data storage, cloud data warehouses, log data sources, and cloud data

analytics services.

https://www.hadoopexam.com/

 4

Role-based security.

By giving CDP people or groups preset roles like Flow Administrator or Flow User, you can determine

who may activate the data service in an environment, make new flow deployments, or monitor

current flow deployments.

Secure connectivity.

Any application may submit data to flow installations using easily provisioned safe, robust, and

scalable endpoints.

Continuous deployment/integration (CD).

DataFlow is automated. Any UI operation may be automated using CLI. One CLI command deploys a

new NiFi flow.

DataFlow Cloudera principles.

Describe flow.

A flow definition represents Apache NiFi data flow logic exported using the Download Flow

Definition action on a process group or root canvas. Parameterization makes flow definitions

transferable across development and production NiFi environments. To operate a NiFi data flow in

CDF, export it as a flow specification and upload it.

Catalog.

In the CDF Catalog, you may import, version, and delete flow definitions. Initiate fresh deployments

from the Catalog.

Deploying flow.

A flow deployment is a Kubernetes-based NiFi cluster executing a flow specification. When you start

flow deployment using the CDF Catalog, a wizard lets you deploy a flow definition. Using the wizard,

define your flow deployment's environment, configuration parameters, auto-scaling, and KPIs.

Deployment Manager

The Deployment Manager lets you change flow deployment parameters, size and scaling settings,

KPIs, and alerts. It lets you update NiFi, access your flow deployments' NiFi canvas, and terminate

them. To access Deployment Manager, click Manage Deployment under Deployment Details.

Function.

A function is a DataFlow Catalog flow that serverless cloud provider services may perform.

Environment.

CDP environments use CDF. CDP-supported environments may use DataFlow. The CDF enablement

procedure develops Kubernetes infrastructure for each environment. Once DataFlow is enabled, you

may deploy flow definitions.

ReadyFlow.

ReadyFlow is a preconfigured data flow that can be installed with a few settings.

https://www.hadoopexam.com/

 5

Gallery ReadyFlow.

All ReadyFlows are in the Gallery. Add a ReadyFlow from the Gallery to the Catalog to establish a

Flow Deployment.

KPI.

Apache NiFi monitors memory, CPU, data flow, and other system information using numerous

metrics. KPIs represent NiFi measurements in Cloudera DataFlow. They provide a real-time

perspective of data flow performance.

Dashboard.

The Dashboard displays all flow deployments across environments in CDF. The Deployment Details

pane includes KPIs, system metrics, events, and alarms for each flow deployment.

Use Case

A CDF is multi-cloud universal data distribution service let's first set up the use case context a

multinational retail company wants to collect data from point-of-sale systems

across the globe and distribute them to multiple cloud services they have six key requirements,

which you can implement using CDF.

1. The company has thousands of point-of-sale systems and need a scalable way to collect data

in streaming mode

2. Developers need an agile low code approach to developing edge data collection flows in

different regions and easily deploy them to thousands of point-of-sale systems.

3. Data residency requirements the pos data and the processing of that data cannot occur

outside the region of origination until that data has been redacted based on local geo rules.

4. These different geo rules require the use of different cloud providers and the need to be

able to process data in different regions.

5. Given the distributive nature of the requirements centralized monitoring across regions and

cloud providers is critical

6. Lastly requirement number six need the ability to deliver data to diverse destinations and

services including cloud provider analytics services snowflake and kafka without requiring

multiple point solutions.

https://www.hadoopexam.com/

 6

Data flow cloudera Start at cdp public cloud's homepage. The first step is to develop a nifi data

distribution flow using the data hub service in cdp public cloud. Let's navigate to the nifi ui on the nifi

canvas, as shown below. The start of the flow is the inbound gateway using the listen http processor

that pos clients can send data to. Open up the options for the snowflake insert database record

processor in the current cdf public cloud release and provided a new connection pooling controller

service for snowflake. In the setup, the user id and password to snowflake are parameterized. The

controller service will automatically download the snowflake driver and optimise the connection

pool to make it simple to transmit data to snowflake. The flow also sends data to cdp kafka. As you

can see, we're delivering data to parametrized topics. Once we've constructed the flow, we'll

download it, put it into the catalogue, and deploy it on a containerized nifi cluster.

https://www.hadoopexam.com/

 7

Let's go to the dataflow service before deploying the application we just studied. The ready

complete gallery can link to cdp data sources like kudu or kafka, as well as third-party data providers

like azure event hub confluent cloud and snowflake.

We won't use the ready for gallery but rather import the flow we developed in data hub into the

catalogue. Let's give that flow a name, a description, and upload the flow that we downloaded

earlier. Once the file is uploaded, let's import that into the catalogue. Now that it's in the catalogue,

we can start the deployment process of actually deploying this onto a kubernetes nifi cluster.

This is just for your understanding and good enough for CDP-0011 certification exam.

https://www.hadoopexam.com/

 8

https://www.hadoopexam.com/
https://www.hadoopexam.com/Cloudera_Certification/CCA159/What_is_cloudera_certifications_CCA131_CCA175_CCA159_CCPDE575_Exam.html

 1

Contents
Chapter-30: Local System Requirement for Private Cloud Base ... 1

Cloudera Manager Overview .. 1

Cloudera Runtime ... 1

CDP Private Cloud Base and Trial Version ... 1

CDP Private Cloud and Hardware ... 2

Operating System Requirement and setup ... 3

Chapter-30: Local System Requirement for Private Cloud Base

Cloudera Manager Overview

Production-use Cloudera Manager binaries need authentication. To access the binaries, you must

have a valid subscription agreement, a licencing key file, and login credentials (username and

password).

Cloudera sends new licensees an email with the licencing key file and login credentials. You may not

have gotten an email if you have a CDP Private Cloud Base Edition licence. The licence key file

contains the authentication credentials. Contact your account representative if you need a licence

key.

Note authentication credentials. During installation, you may require them to configure a remote

parcel repository or install Cloudera Manager packages using YUM, APT, or other tools. Use your

login credentials to build the URL to the Cloudera Manager repository in the Cloudera Archive.

Cloudera Runtime

Production Cloudera Runtime packages need authentication. To access the packages below, you

must have a subscription agreement, licence key file, and login credentials (username and

password). Cloudera sends new licensees an email with the licencing key file and login credentials.

You may not have gotten an email if you have a CDP Private Cloud Base Edition licence. The licence

key file contains the authentication credentials. Contact your account representative if you need a

licence key.

Use your account credentials to build the URL to the Cloudera Archive Runtime repository. During

installation, Cloudera Manager may download Runtime parcels.

CDP Private Cloud Base and Trial Version

Try Cloudera Data Platform's CDP Private Cloud Base Edition for 60 days without a licence key. Visit

the CDP Private Cloud Base Trial Download page, click Try Now, and follow the download

https://www.hadoopexam.com/

 2

instructions. Installing CDP Private Cloud Base without a licence key performs a trial installation with

an integrated PostgreSQL database that is not suited for a production setting. Trial installation

documentation has further details. A licence may permanently allow a 60-day CDP Private Cloud

Base Edition trial.

CDP Private Cloud and Hardware

As you build your cluster, you'll need to assign Cloudera Manager and Runtime responsibilities to

hosts to optimise resources. Cloudera offers recommendations for assigning cluster host roles.

Installation in a production environment is covered here.

• Installing: Before installing Cloudera Manager, Cloudera Runtime, and other managed

services in production, examine the Cloudera Data Platform Private Cloud Base

Requirements and Supported Versions.

• Cloudera Manager, Runtime, and Managed Services Installation: This method is

recommended for production Cloudera Manager and Runtime installations. Installing CDP

Private Cloud Base Trial is for non-production use.

• Configure Cloudera Manager's Repository: RHEL-compatible computers install Cloudera

Manager using yum. Installing software requires access to repositories. Cloudera maintains

Internet-accessible Runtime and Cloudera Manager repositories.

• Install JDK: You may install OpenJDK or Oracle JDK directly from Oracle on all hosts for CDP

Private Cloud Base.

• Install Cloudera Manager Server: Install Cloudera Manager packages on Cloudera Manager

Server.

• Installing and configuring databases: Cloudera Manager saves configuration information,

system health, and job progress in databases and datastores.

• Configure Cloudera Manager's database: scm prepare database.sh may build and setup a

database in Cloudera Manager Server.

• Install software and runtime: Start Cloudera Manager Server and log in to the Admin

Console after setting up the database. Install using the wizard.

• Setup a cluster using the wizard: Add Cluster - Configuration wizard begins immediately after

Add Cluster - Installation. Each wizard page is explained here.

• (Recommended) AUTO-TLS: Auto-TLS simplifies cluster TLS encryption management.

• Apache Ranger Extras: Apache Ranger must be installed after Cloudera Manager and a

cluster.

• Ubuntu Knox: This guide explains how to install Apache Knox with CDP Private Cloud Base.

• HDFS data-at-rest encryption: This section explains how to encrypt HDFS data end-to-end.

HA is supplied for best performance.

• Encrypting Cloudera Navigator: Learn about installing Navigator Encrypt, setting up TLS

certificates on a client, and entropy requirements.

• Cloudera Key HSM installation: Cloudera Navigator Key HSM translates between the target

HSM platform and Cloudera Navigator Key Trustee Server. Navigator Key HSM lets you

utilise a Key Trustee Server to securely store and recover encryption keys and other secure

items.

• Installing Ranger RMS translates Hive access controls to HDFS.

https://www.hadoopexam.com/

 3

Operating System Requirement and setup

There are some requirements which needs to be followed for setting up the Operating System

before installation of the “Cloudera Data Platform”. Let’s follow the below steps for the same.

• Create a User on the operating System which has following detail.

• Username: hadoopexam1

• Password: hadoopexam

• As the default user created is hadoopexam in my case. In your case it would be something

else, this is usually the email Id which you have used.

• To create new user type below command.

sudo useradd hadoopexam1

• And we need to set the password for this new user(hadoopexam1). Hence, type the

below command.

sudo passwd hadoopexam1

• Please provide the value of the password as “hadoopexam” (Note: Without quote). Your

screen should look like something below.

• Now create an entry in the “/etc/sudoers” file. This file is used to assign System rights to the

System users. This is more of permission file, what a user can do.

sudo vi /etc/sudoers

Add the below line

hadoopexam1 ALL=(ALL) NOPASSWD: ALL

https://www.hadoopexam.com/

 4

• Now configure the SSH Password. As we need to SSH most of the time. And there are

multiple ways to do the SSH like SSH Key based authentication, username and password-

based authentication. We wanted to use the Password based authentication to login on this

instance using the “PasswordAuthentication” mechanism.

sudo vi /etc/ssh/sshd_config

Now set the value as below. This key-value is already present in the file. We just need to uncomment

it and save the file.

https://www.hadoopexam.com/

 5

• To be effective this setting we need to restart the ssh service using below command.

sudo systemctl restart sshd.service

https://www.hadoopexam.com/

 6

• Now Disable the Security Enhanced Linux aka SELinux”. This is again one of the ways to
controlling the access on the Linux Operating System. However, we wanted this to be

disabled for CDP installation. Use the below command to open the file.

sudo vi /etc/sysconfig/selinux

And set the key-value as “SELINUX=disabled”. Once done save the file.

• Now we need to set the hostname for this instance as below. However, this command is

effect is only temporary. As soon as you restart this VM instance this setting would be

lost.

You can remove –static argument

sudo hostnamectl set-hostname main.hadoopexam1.com --static

hostname -f

• To make this permanent, we need to run some script as soon as instance started. For

that we can create a new script file named “usr/sbin/heonstart.sh” and add the below
scripting code in it. This would few things as mentioned in the script comments.

#Create a custom script file, which can be executed when host starts

sudo touch /usr/sbin/heonstart.sh

sudo chmod 755 /usr/sbin/heonstart.sh

sudo vi /usr/sbin/heonstart.sh

https://www.hadoopexam.com/

 7

• Now update the “/etc/rc/d/rc.local” for running this script on the startup.

#Lets make rc.local file as an executable

sudo chmod +x /etc/rc.d/rc.local

sudo systemctl enable rc-local

sudo systemctl start rc-local

sudo vi /etc/rc.d/rc.local

Now add the below line in this file.

sudo sh /usr/sbin/heonstart.sh

• Update Network Configuration file.

sudo vi /etc/sysconfig/network

And add the below lines in the file.

NETWORKING=yes

HOSTNAME=main.hadoopexam1.com

https://www.hadoopexam.com/

 8

• Now disable the firewall.

First, we need to create a firewall.rules file as below. We are doing by copying existing iptables.

sudo iptables-save > ~/firewall.rules

Now using the below command, disable the firewall.

sudo systemctl disable firewalld

sudo systemctl stop firewalld

• Configure the swappiness.

Swapping is a technique where data in Random Access Memory (RAM) is written to a special

location on your hard disk—either a swap partition or a swap file—to free up RAM.

sudo vi /etc/sysctl.conf

Now add the following line in this file.

vm.swappiness=0

https://www.hadoopexam.com/

 9

Get Full Version Contents from this link

https://www.hadoopexam.com/
https://www.hadoopexam.com/Cloudera_Certification/CCA159/What_is_cloudera_certifications_CCA131_CCA175_CCA159_CCPDE575_Exam.html
https://www.hadoopexam.com/Cloudera_Certification/CCA159/What_is_cloudera_certifications_CCA131_CCA175_CCA159_CCPDE575_Exam.html

 1

Contents
Chapter-31: Cloudera Manager .. 1

Overview ... 1

Cloudera Manager Architecture ... 3

Cloudera Manager and Heartbeating ... 4

Cloudera Manager and State management .. 4

Cloudera Manager and Distributing Software .. 5

Cloudera Manager and Process Management ... 5

Cloudera Manager and Host Management .. 5

Cloudera Manager Agents .. 6

Cloudera Manager and Resource Management ... 6

Cloudera Manager and User Management .. 7

Cloudera Manage and Security Management .. 7

Cloudera Manager and Monitoring .. 8

Cloudera Manager and Health Test .. 9

Cloudera Manager and Metric Collection and Display ... 9

Cloudera Manager Alerts and triggers .. 10

Chapter-31: Cloudera Manager

Overview

Cloudera Manager manages CDP clusters and Cloudera Runtime services. The Cloudera Manager

server controls one or more clusters using Cloudera Manager Agents on each cluster host. The

Cloudera Manager Admin Console manages CDP Private Cloud Base installations. You may start and

stop the cluster and individual services, configure and add new services, manage security, and

update the cluster using Cloudera Manager Admin Console. You may programmatically manage

Cloudera using the API. Cloudera Manager is separate from CDP Versions.

Cloudera Manager terminology. Cloudera Manager language must be understood before usage. The

words are related and defined below.

https://www.hadoopexam.com/

 2

Sometimes service and role relate to both types and instances, which is confusing. Cloudera

Manager and this section interchange type and instance. Home > Status and Clusters > ClusterName

list service instances. This is comparable to computer languages, where "string" might refer to a type

or an instance ("hi there"). "Type" is used to indicate a type, while "instance" indicates an instance.

Deployment: Cloudera Manager's settings and clusters.

Resource pool: A named configuration of resources and a strategy for scheduling them in Cloudera

Manager.

Cluster: A group of computers or racks that conduct MapReduce and other algorithms on HDFS data.

In Cloudera Manager, a logical entity that includes hosts, Cloudera Runtime, and service and role

instances. One cluster per host. Each cluster may only be linked with one Cloudera Manager Server.

Physical or virtual computer that executes role instances in Cloudera Manager. One cluster per host.

Rack: In Cloudera Manager, a collection of physical hosts serviced by the same switch.

Service: Linux tool that executes a System V init script in /etc/init.d/ in a predictable environment,

eliminating most environment variables and setting the working directory to /. A Cloudera Manager

category of distributed or non-distributed cluster-running capability. Service kind. Hive, HDFS, YARN,

and Spark.

Instance service: In Cloudera Manager, a cluster-running service. "HDFS-1" and "yarn" A service

instance spans roles.

Role: A Cloudera Manager service category. NameNode, SecondaryNameNode, DataNode, and

Balancer are HDFS roles. Role kind.

Instance: A role instance in Cloudera Manager. It's a Unix process. "NameNode-h1" and "DataNode-

h1"

Grouping: In Cloudera Manager, role instance configuration properties.

https://www.hadoopexam.com/

 3

Host-template: Cloudera Manager roles. Each role group's instance is generated and assigned to a

host when a template is deployed.

Gateway: A position that grants access to cluster services. HDFS, Hive, Kafka, MapReduce, Solr, and

Spark each have gateway roles for their clients. Gateway roles aren't necessarily called "gateway" or

just for client access. Hue Kerberos Ticket Renewer proxies Kerberos tickets.

Gateway nodes or edge nodes provide one or more gateway functions in network or cloud

environments. When Deploy Client Configuration is chosen in Cloudera Manager Admin Console, the

gateway nodes get the relevant client configuration files.

Parcel: Binary distribution format including compiled code and meta-information like package

description, version, and dependencies.

Dynamic pool: Static partitioning of CPU, memory, and I/O weight among services in Cloudera

Manager.

Cloudera Manager Architecture

Cloudera Manager Server is at its core. The Server hosts the Cloudera Manager Admin Console, API,

and application logic and instals, configures, starts, and stops services and manages the cluster.

Cloudera Manager Server interacts with other parts.

https://www.hadoopexam.com/

 4

• Every host has agent. The agent starts and stops processes, unpacks configurations, and

triggers instals.

• Management Service – a collection of roles that monitor, alert, and report.

• Database contains monitoring and configuration data. One or more database servers

operate numerous logical databases. Cloudera Manager Server and monitoring utilise

independent logical databases.

• Cloudera Repository is Cloudera Manager's software repository.

• Clients are server interfaces.

o Administrators utilise Cloudera Manager Admin Console to manage clusters and

Cloudera Manager.

o Developers utilise Cloudera Manager API to construct bespoke apps.

Cloudera Manager and Heartbeating

Cloudera Manager uses heartbeats for communication. Agents transmit heartbeats to Cloudera

Manager Server every 15 seconds. State changes increase frequency to decrease user latency.

Agent tells Cloudera Manager Server of its activity during heartbeat exchange. Cloudera Manager

Server replies with Agent actions. Agent and Cloudera Manager Server reconcile. If you start a

service, the Agent tries to start the required processes; if a process fails to start, Cloudera Manager

Server classifies the start command as unsuccessful.

Cloudera Manager and State management

Cloudera Manager Server manages cluster state. This state is recorded in Cloudera Manager Server's

database as "model" and "runtime." Cloudera Manager represents cluster roles, settings, and

interdependencies. Model state captures what runs where and how. Model state captures that a

cluster has 17 hosts that each operate a DataNode. Cloudera Manager Admin Console settings

screens, API, and "Add Service" interact with the model.

Runtime state is what processes are executing where and what actions (such rebalance HDFS or

perform a Backup/Disaster Recovery schedule) are running. Runtime state contains process

configuration files. When you choose Start in the Cloudera Manager Admin Console, the server

collects all necessary service and role settings, verifies it, produces configuration files, and saves

them in the database.

https://www.hadoopexam.com/

 5

When you edit a configuration, you update the model state. If Hue is running, it uses the old port.

When this happens, the job is considered "outdated." Restarting the role resynchronizes (which

triggers the configuration re-generation and process restart).

Cloudera Manager models most settings, but some need specific management. Cloudera Manager

allows you add attributes directly to configuration files to work around bugs or investigate

unsupported alternatives.

Cloudera Manager and Distributing Software

Cloudera Manager instals Cloudera Runtime and other managed services. Cloudera Manager

supports packages and parcels.

A package is a binary distribution format that comprises compiled code, meta-information, and

dependencies. Package management systems use meta-information to facilitate package searches,

execute upgrades, and fulfil dependencies. Cloudera Manager instals and upgrades using each OS's

native package manager. A parcel is a binary format that contains Cloudera Manager's application

files and information.

Cloudera Manager and Process Management

Cloudera Manager starts/stops processes: You can only start or terminate role instance processes in

a Cloudera Manager-managed cluster. Cloudera Manager employs supervisord, an open source

process management tool, to start processes, reroute log files, inform of process failure, and set the

caller process's effective user ID. Cloudera Manager restarts crashed processes. If a role instance's

process crashes regularly after startup, it will be flagged as unhealthy. Stopping the Cloudera

Manager Server and Agents won't affect running role instances.

Start-up init.d starts the Agent. It queries Cloudera Manager Server to decide which processes to

launch. Cloudera Manager monitors the Agent's host. If the Agent stops beating, the host is

considered sick. Agents initiate and stop processes. When the Agent discovers a new process from

the Server heartbeat, it unpacks the configuration in /var/run/cloudera-scm-agent. It contacts

supervisord to begin. Cloudera Manager processes never travel alone, as these activities show. A

process involves more than simply exec() parameters; it also includes configuration files, directories,

and other information.

Cloudera Manager and Host Management

Cloudera Manager manages hosts in clusters. When you initially launch Cloudera Manager Admin

Console, you may search for hosts to add to the cluster and map host responsibilities. Cloudera

Manager delivers JDK, Cloudera Manager Agent, Impala, Solr, etc. to managed hosts automatically.

Once the services are installed and operating, the Admin Console's Hosts tab reveals the managed

hosts' status. The information comprises the host's Cloudera Runtime version, cluster, and number

of roles. Cloudera Manager manages host lifecycles and adds/deletes hosts. Cloudera Management

Service Host Monitor runs health checks and gathers host metrics to monitor host health and

performance.

https://www.hadoopexam.com/

 6

Cloudera Manager Agents

Cloudera Manager Agent manages role instance processes with Cloudera Manager Server. You can

only start or terminate role instance processes in a Cloudera Manager-managed cluster. Cloudera

Manager employs supervisord, an open source process management tool, to start processes,

reroute log files, inform of process failure, and set the caller process's effective user ID. Cloudera

Manager restarts crashed processes. If a role instance's process crashes regularly after startup, it will

be flagged as unhealthy.

Start-up init.d starts the Agent. It queries Cloudera Manager Server to decide which processes to

launch. Cloudera Manager monitors the Agent's host. If the Agent stops beating, the host is

considered sick.

Agents initiate and stop processes. When the Agent discovers a new process from the Server

heartbeat, it unpacks the configuration in /var/run/cloudera-scm-agent. It contacts supervisord to

begin.

Cloudera Manager and Resource Management

Resource management helps forecast cluster behaviour by describing service impacts.

o Guarantee timely completion of key tasks using resource management.

o Support equitable cluster scheduling amongst user groups.

o Prevent users from blocking cluster access.

A static service pool wizard may statically allocate resources using cgroups. The wizard configures

cgroups based on your service allocation. The next graphic shows static pools for HBase, HDFS,

Impala, and YARN services with 20%, 30%, 20%, and 30% of cluster resources.

https://www.hadoopexam.com/

 7

Using dynamic resource pools, you may dynamically apportion YARN and Impala resources.

Depending on your Cloudera Runtime version, Cloudera Manager's dynamic resource pools enable

the following scenarios:

o YARN controls virtual cores, memory, running applications, undeclared child pool resources,

and pool scheduling policies. In the figure, three dynamic resource pools—Dev, Product, and

Mktg—are established for YARN. If an application is allocated to the Product pool while

other apps use the Dev and Mktg pools, the Product pool gets 10% of the total cluster

resources. YARN Product pool gets 30% of cluster resources if neither Dev nor Mktg pools

are in use.

o Impala maintains memory for query pools and limits ongoing and pending queries.

Cloudera Manager and User Management

User accounts control Cloudera Manager functionalities. A user account defines how a user is

authenticated and their rights. Cloudera Manager has many authentication methods. Cloudera

Manager can authenticate users against its database or an external service. The external

authentication service might be an LDAP server or another external service. Cloudera Manager

supports SAML single sign-on.

Cloudera Manage and Security Management

Authentication: Users and services must authenticate their identity to access a system resource via

authentication. Organizations handle user identification and authentication using time-tested

technologies, such as LDAP for identity, directory, and group management, and Kerberos for

authentication.

Cloudera supports both technologies. Organizations having existing LDAP directory services such as

Active Directory (included in Microsoft Windows Server's Active Directory Services) may utilise

existing user accounts and group listings instead of establishing new accounts across the cluster.

Cloudera Navigator's user role authorisation method requires Active Directory or OpenLDAP.

Cloudera supports Kerberos and Active Directory authentication. Active Directory supports Kerberos

in addition to LDAP for identity management and directory capabilities.

Both systems exist. Microsoft Active Directory is an LDAP directory service that offers Kerberos

authentication, and Kerberos credentials may be stored and managed in LDAP. Kerberos

authentication may be used by Cloudera Manager Server, cluster nodes, and Apache Hive, Hue, and

Impala.

Authorization: Who or what has access to a resource or service is authorised. Since Hadoop

combines the capabilities of numerous, previously distinct IT systems as an enterprise data centre, it

needs different permission rules with differing granularity. Hadoop administration solutions ease

setup and maintenance by tying all users to existing LDAP or AD groups. Role-based access control

for batch and interactive SQL queries. Cloudera Runtime's access control includes:

https://www.hadoopexam.com/

 8

o Traditional Each directory and file has a single owner and group with POSIX-style

permissions. Each assignment has a basic set of permissions: read, write, and execute for

files, and access to child directories for directories.

o HDFS ACLs let you establish various permissions for individual users or groups.

o Apache HBase employs ACLs to permit column, column family, and column family qualifier

activities. Users and groups may get HBase ACLs.

o Apache Ranger's role-based access control.

Encryption: At several cluster technology tiers, data at rest and in transit are encrypted.

o Application Encryption: HDFS Transparent Encryption allows you encrypt HDFS folders.

Cloudera recommends utilising Key Trustee Server with HDFS encryption to store encryption

keys. CDP components (Impala, MapReduce, YARN, or HBase) may encrypt data stored

temporarily outside HDFS.

o Operating System Encryption: Encryption may be applied to a whole volume under Linux.

o Network Level Encryption: Using TLS/SSL, HTTP, RPC, or TCP/IP client-server connections

may be encrypted.

Cloudera Manager and Monitoring

Cloudera Manager monitors the health and performance of cluster components (hosts, service

daemons) and task performance and resource needs.

Cloudera Manager monitors:

o Monitoring Cloudera Runtime Services explains how to observe service and role instance

health testing. Charts showing measurements assist diagnose problems. Health tests suggest

what to do if a component's health deteriorates. You may inspect a service or role's activity

history and a configuration audit log.

o Monitoring Hosts shows how to examine information about all the hosts on your cluster:

which hosts are up or down, current resident and virtual memory usage for a host, what role

instances are executing on a host, etc. You may examine a summary of all hosts in your

cluster or dig down for more information on an individual server, including charts of critical

data.

o Activities - Describes how to observe the activities operating on the cluster, both in real time

and via dashboards that show previous activity, and gives various data on the resources

utilised by particular processes. Compare the performance of related jobs and individual task

efforts to identify behaviour or performance issues.

o Events - Describes how to observe and alert on cluster-wide events and search their history.

Time range, service, host, keyword, etc. may filter events.

o Cloudera Manager may be configured to create alerts from particular occurrences.

Configure event thresholds, activate and disable them, and set up email or SNMP trap alerts

for crucial events. You may temporarily silence notifications for particular roles, services,

hosts, or the whole cluster for system maintenance/troubleshooting.

o Lifecycle and Security Auditing shows how to observe service, role, and host lifecycle

activities such as establishing a role or service, making configuration updates,

decommissioning and recommissioning hosts, and performing Cloudera Manager

https://www.hadoopexam.com/

 9

management service commands. Time range, service, host, phrase, etc. may filter audit

event entries.

o Charting Time-Series Data explains how to search metric data, build charts, organise data,

and save charts to user-defined dashboards.

o Logs - How to retrieve logs based on the current context. When monitoring a service, you

may click a single link to examine log entries using the same UI. When examining a user's

activities, you may simply examine the appropriate log entries from the job's hosts.

o Reports - View historical disc use by user, user group, and directory and cluster job activity

by user, group, or job ID. These aggregated reports (hourly, daily, weekly, etc.) may be

exported as XLS or CSV files. You may search and set quotas for HDFS directories.

o Troubleshooting Cluster Configuration and Operation - Describes how to utilise Cloudera

Manager log and notification features to troubleshoot issues.

Cloudera Manager and Health Test

Cloudera Manager uses health checks to monitor cluster services, roles, and hosts. Cloudera

Management Service offers role health checks. Default settings allow role-based health checks. A

basic health test is if every NameNode data directory has adequate space. A more complex health

test may compare the latest HDFS checkpoint to a threshold or if a DataNode is linked to a

NameNode. In a distributed system like HDFS, it's usual to have a few DataNodes offline (assuming

dozens of servers), therefore we enable setting limits on what proportion of hosts should colour the

whole service unavailable.

Tests might be good, concerning, or bad. If a test falls below a warning level, it's Concerning. If a test

fails, it returns Bad. A service or role instance's overall health is determined by its health tests. If any

health test is Concerning (but none are Bad), the role or service's health is Concerning. In Cloudera

Manager Admin Console, health checks are color-coded: Good, Concerning, and Bad.

Monitoring and setup are often separated. Monitoring is enabled without further settings or tools

(for example, Nagios). By having a comprehensive configuration model, Cloudera Manager knows

which folders to monitor, which ports to utilise, and what credentials to use. When you install

Cloudera Manager, all monitoring is enabled.

Cloudera Manager and Metric Collection and Display

Cloudera Manager uses health checks to monitor cluster services, roles, and hosts. Cloudera

Management Service offers role health checks. Default settings allow role-based health checks. A

basic health test is if every NameNode data directory has adequate space. A more complex health

test may compare the latest HDFS checkpoint to a threshold or if a DataNode is linked to a

NameNode. In a distributed system like HDFS, it's usual to have a few DataNodes offline (assuming

dozens of servers), therefore we enable setting limits on what proportion of hosts should colour the

whole service unavailable.

https://www.hadoopexam.com/

10

Tests might be good, concerning, or bad. If a test falls below a warning level, it's Concerning. If a test

fails, it returns Bad. A service or role instance's overall health is determined by its health tests. If any

health test is Concerning (but none are Bad), the role or service's health is Concerning. In Cloudera

Manager Admin Console, health checks are color-coded: Good, Concerning, and Bad.

Monitoring and setup are often separated. Monitoring is enabled without further settings or tools

(for example, Nagios). By having a comprehensive configuration model, Cloudera Manager knows

which folders to monitor, which ports to utilise, and what credentials to use. When you install

Cloudera Manager, all monitoring is enabled.

Cloudera Manager Alerts and triggers

An event records something interesting that has happened, such as a service's health changing or a

log message being written. Many default-enabled events are specified.

A notable incident triggers an alert. Alerts are badged in event lists. Alert Publisher may deliver email

or SNMP traps to a trap receiver.

A trigger describes an action to be executed when a service, role, role configuration group, or host

meets certain requirements. The criteria are represented as a tsquery statement, and the action is to

alter the service, role, role configuration group, or host health to Concerning (yellow) or Bad (red).

Get Full Version Contents from this link

https://www.hadoopexam.com/
https://www.hadoopexam.com/Cloudera_Certification/CCA159/What_is_cloudera_certifications_CCA131_CCA175_CCA159_CCPDE575_Exam.html
https://www.hadoopexam.com/Cloudera_Certification/CCA159/What_is_cloudera_certifications_CCA131_CCA175_CCA159_CCPDE575_Exam.html

 1

Contents
Chapter-32: Describe the use and major functions of Workload XM ... 1

Overview ... 1

Recent features added in Workload XM are... 2

Introduction to Workload XM ... 2

Telemetry Publisher .. 3

Enabling Workload XM ... 3

How metrics are collected? .. 4

From Telemetry Publisher to Workload XM ... 4

Data Types collected by Telemetry Publisher Service .. 4

Removing Sensitive information from Metrics ... 5

Workload XM Web Interface .. 5

Chapter-32: Describe the use and major functions of Workload XM

Overview

How do you get to know, how much workload is being handled by your Cloudera CDP platform? For

example, you want to know that

- Your workload is processed by which cluster.

- Which Service was involved in processing your workload?

- What data is processed as part of your workload.

https://www.hadoopexam.com/

 2

These all things you can understand using Workload XM. Other things for your CDP, Workload XM

can help is

- Troubleshooting failed jobs.

- Optimizing slow jobs

- Workload XM displays metrics about a Job’s performance and compares the current Job

execution with previous execution by creating baselines.

Cloudera Workload XM is a complete workload-centric solution that proactively optimises

workloads, application performance, and infrastructure capacity for

- Data Warehousing

- Data Engineering

- Machine Learning settings.

It does this by monitoring and analysing all aspects of the workload. Customers and end users can

get an interactive understanding of their workloads and improve their systems with the help of

Workload XM.

Following are the main features of Workload XM and help you in

- To better understanding of their workloads, clusters, and resources.

- Analyses available on demand, together with instruction and suggestions for improvement.

- Detection and health checks at early stages, as well as daily reporting.

- Multiple data kinds originating from the platform's primary engines known as Cloudera

Enterprise.

- Quicker incorporation of new use cases and applications as they become available.

Recent features added in Workload XM are

Analyze your cluster, job, and query costs with the Workload XM Chargeback feature: Chargeback

lets you specify cost centres. Once established, Workload XM visibly shows cluster charges. This new

functionality lets you define Workload XM cost centres for workload clusters based on CPU and

memory use. Once formed, you may plan and estimate budgets and future workload situations

utilising Workload cluster cost insights.

Workload XM Auto Actions - Notifications triggers job and query actions: Based on your criteria,

this new functionality instantaneously initiates an action event. The event of your action is triggered

when a task or query satisfies your action's requirements and its conditions are met. For instance,

nodes or tasks may crash as a result of memory depletion. You may take action before a possible

issue arises if you are aware when the amount of accessible memory is approaching a certain level.

You may create an action using the Auto Actions feature that alerts you through email when a task is

using too much memory so that you can take action to resolve a possible issue.

Utilize the Workload XM Purge Event to delete unused HDFS files: By customising and timing the

new Workload XM purge event, bottlenecks between Telemetry Publisher and Workload XM may be

lessened. With the use of this functionality, you can get rid of old HDFS data that can pile up or

prevent Telemetry Publisher from absorbing and providing more recent data to Workload XM. The

file's data group and the data group's retention limit determine the purge event.

https://www.hadoopexam.com/

 3

Resource Consumption by Services: shows how much CPU and memory are used by each service

throughout the given time period. To see how much CPU or memory is used by each of the cluster's

services, as a percentage, move your mouse over the time line.

Resource Consumption by Nodes: shows the CPU and memory usage for every cluster node. The

proportion of CPU or memory used by each node and its services is shown as you move your cursor

over the time line.

Introduction to Workload XM

Cloudera's Workload XM helps you understand your workloads, clusters, and resources. Its analytics

and health checks let you detect and troubleshoot current and future issues, and its suggestions help

you promptly solve and improve them. Telemetry Publisher, a Cloudera Manager Management

Service role, sends Workload XM diagnostic information after a workload completes.

- Metrics and health checks to discover and fix problems.

- Prescriptive advice and solutions to solve issues swiftly.

- Performance baselines and historical analysis to detect and fix issues.

Workload XM also:

- Visualize your workload cluster's current and historical expenditures to plan and anticipate

budgets, workload environments, and user groups and resources.

- Trigger real-time actions across operations and queries to prevent issues.

- Enable daily email delivery of cluster data to track, compare, and monitor without logging in.

- Break down workload measurements to meet business needs and examine particular

workload criteria. You may examine how queries that access a given database or resource

pool perform versus SLAs. Or you may observe how a user's queries execute on your cluster.

Telemetry Publisher

Telemetry Publisher is a role, in a Cloudera Manager Management Service. When any jobs get

completed, then information about the job and the cluster that processed the job is sent to

Workload XM with Telemetry Publisher.

Enabling Workload XM initiates the Telemetry Publisher role. Telemetry Publisher sends Impala,

Oozie, Hive, YARN, and Spark task metrics, configuration, and log files to Workload XM. Telemetry

Publisher gathers measurements for Workload XM clusters.

Enabling Workload XM

As soon as you enable the Workload XM, Cloudera Management Service will starts the Telemetry

Publisher Role as well. For the following jobs

- Impala

- Oozie

- Hive

- YARN

- Spark

Telemetry Publisher collects and transmits

https://www.hadoopexam.com/

 4

- Metrics data

- Configuration Data

- Log files

For all of the above-mentioned services to Workload XM. You can have multiple servers configured

in your CDP and Telemetry Publisher Role collects metrics for all the clusters that use Workload-XM

environments. For a single cluster how, that is performed is shown below

How metrics are collected?

There are two mechanisms by which metrics can be collected

- Pull: As name suggests, Telemetry Publisher pulls diagnostic metrics from Oozie, YARN and

Spark periodically. Default configuration is once per minute.

- Push: To push metrics data, agent must be installed for respective service. In case of Hive

and Impala, Cloudera Manager Agent pushes, metrics data to the Telemetry Publisher within

every 5 seconds after a job finishes.

From Telemetry Publisher to Workload XM

- Once data reaches to Telemetry Publisher, this would be stored under its own data directory

for temporarily and periodically (once per minute) exported to the Workload XM.

Data Types collected by Telemetry Publisher Service

Telemetry Publisher Service collects and sends the following metrics data to Workload XM.

1. YARN MapReduce Jobs: As you know all the MapReduce jobs are executed by YARN, are

saved in YARN Job History Server. So, Telemetry Publisher Pulls the configuration and jhist

file.

https://www.hadoopexam.com/

 5

o Jhist:

 This is a Job History File.

 Contains the job and task counters.

 It is created in HDFS.

o MapReduce Task logs:

 MapReduce task logs are also created in HDFS.

 Be default it is disabled to fetch MapReduce Task logs.

 To send MapReduce Task logs, you need to enable it then only it can send

data to Workload XM.

2. Spark Applications: Again, in this case as well Telemetry Publisher has to Polls

o Applications which are completed, stored in Spark History Server.

o Event logs for Spark can also be stored in HDFS.

o Telemetry Publisher collects event logs from HDFS and send them back to Workload

XM.

o By default, for Spark Application Data Collection is not enabled.

3. Oozie Workflow:

o Similarly, Telemetry Publisher polls Oozie servers for recently completed Oozie

workflows and send the metrics data to Workload XM.

4. Hive Queries:

o HIveServer2 creates a query detail file after query completed.

o Cloudera Manager Agent periodically searches for the query details files.

o Agent send these files to Telemetry Publisher.

o To get these query files Hive Query Audits must be enabled.

5. Impala Queries:

o Impala creates Query profiles for recently completed queries.

o Cloudera Manager Agent sends this query profile to Telemetry Publisher.

Removing Sensitive information from Metrics

- It is possible that applications you are running using Hive, Impala, MapReduce, Spark or

Oozie have some sensitive information in Diagnostic Data.

- So, it is necessary to configure the redaction.

- It is recommended that even if you are not sending metrics or diagnostic data to Telemetry

Publisher.

- Job configurations of logs can have sensitive information and that needs to redacted.

- Following are the list of data and resources which can be configured to redacting sensitive

data before sending it to Telemetry publisher.

o Log & query redaction: You have to create regular expression for filtering out the

data. This needs to be done on the query and logs which are collected by Telemetry

Publisher.

o YARN MapReduce Job properties: As you know, Telemetry publisher pull job

configuration data from the HDFS. Hence, before storing job configuration

information in HDFS, you have to redact sensitive information.

o Spark Event logs & Spark executor logs: Again, this can be filtered using regular

expression for Spark2 jobs only. This can filter both event and executor logs.

https://www.hadoopexam.com/

 6

 Be default this is enabled. However, you can override by using safety valves

in Cloudera Manager or in the Spark application itself.

Workload XM Web Interface

The Workload XM UI presents graphical data on workload health, performance, and status. Its

dashboard components include data, performance, health, and recommendations.

Troubleshooting reason for long running failed query

https://www.hadoopexam.com/

 7

https://www.hadoopexam.com/
https://www.hadoopexam.com/Cloudera_Certification/CCA159/What_is_cloudera_certifications_CCA131_CCA175_CCA159_CCPDE575_Exam.html

 1

Contents
Chapter-33: Describe the use and major functions of Replication Manager. 2

Learn Some Terminology for Replication Manager .. 2

Policies for Some Components ... 3

Accessing Replication Manager .. 4

HBase backups .. 5

HDFS Replication ... 5

Hive/Impala replication... 5

Sentry to Ranger replication ... 5

Verifying the Replication on CDP .. 5

https://www.hadoopexam.com/

 2

Chapter-33: Describe the use and major functions of Replication Manager.

About Replication Manager

As name suggests, it is for replicating data to Public Cloud Clusters, which are managed using CDP.

Replication Manager is a service in a CDP. That support copying data from HDFS, Hive and HBase to

CDP Public Cloud clusters. However, there are different versions dependency what it supports or

not. For that you need to look into Support Matrix for Replication Manager on CDP Public Cloud.

Replication Manager can be used to replicate data from CDH Clusters and CDP Private Cloud Base

Cluster to CDP Public Cloud Clusters.

As mentioned, replication manager cannot support every possible use case and you may have to use

alternate method for replicating data like Hive External tables and HBase, when Replication Manager

is not able to support. For an alternate replication for HBase, you can use the Operation Database

Replication plugin. Using this plugin, you can securely enable data replication for HBase data in Data

Hub and CDP Operational Database. That plugin is not available openly, you need to connect to

Cloudera Account team for getting the same. Replication Manager: service to copy and migrate data

from CDH clusters to CDP Public Cloud.

• HDFS replication

• Hive metadata replication

• Hive external table replication

• Table-level replication

Many Cloudera clients are moving from on-prem to cloud by backing up their data or performing

multi-functional analytics on CDP Public cloud like AWS or Azure. Replication Manager allows

catastrophe recovery and data movement. Replication Manager allows users to effortlessly migrate

tables/structured data and files/unstructured data to their chosen CDP cloud using easy-to-define

rules.

Policies may enable periodic replication, allowing end-user control over workload transfer to the

cloud. Replication Manager migrates Apache Hive, Apache Impala, and HDFS from CDH to CDP Public

Cloud.

Learn Some Terminology for Replication Manager

Web UI

Replication Manager Service can be accessed using WebUI, which runs on the same host where

Cloudera Data Platform runs. As you can see on the Replication Manager under Control Plane.

https://www.hadoopexam.com/

 3

Policy

These are set of rules, that would be applied during replication. For example, which cluster is a

source and destination, the type of data to replicate, schedule for replication etc.

Job

This represent an instance of a policy that can be in running state or already completed.

Data Lake

You can have a CDP cluster on Cloud, using virtual machines, and keeping data retained on Cloud

storage. A Cloud data lake requires minimal services for metadata and governance, such as Hive

MetaStore, Ranger and Atlas.

Cloud storage

You can have data in public cloud like AWS, Azure etc. So, if your storage is in cloud account like AWS

S3 of AWS or Azure then that is called cloud storage.

Policies for Some Components

1. HDFS

To replicate data from HDFS, you must create schedules to replicate data incrementally.

2. Hive

You can replicate following data

- Data stored in Hive tables.

- MetaData for Hive tables.

- Data stored in Hive Metastore.

- Impala Metadata i.e. Catalog Server Metadata, which is associated with Impala tables

registered in the Hive metastore.

- Replicating Hive external tables.

- Tables which are managed and ACID tables in Hive are converted to external tables after

replication.

- You can do table level replication as well.

- You can also migrate Sentry Permissions to the Ranger.

3. HBase

For HBase all below mentioned replications are supported

- From CDP Private Cloud Base cluster to Data Lake Cluster.

- From CDH cluster to Data Lake Cluster

https://www.hadoopexam.com/

 4

- From CDH Cluster to Cloudera Operational Database (COD) cluster.

- From COD Cluster to COD Cluster.

You can use HBase replication policies to perform an active-active disaster recovery with conflict

resolution (enabling other disaster recovery use cases which provides an efficient utilization of

resources), or to replicate HBase data in CDP Private Cloud Base clusters, CDH clusters, or COD. You

can copy or replicate HBase data between different environments within a Virtual Private Cloud

(VPC) using HBase replication policies. Any data change in the source cluster is pushed to the target

cluster automatically without user intervention.

Accessing Replication Manager

As you can see replication Manager is under Control Plane. Once you open a Replication Manager

there are in total 4 different web pages would be shown to you as below

1. Overview Page

Overview page provides a snapshot view of the Replication Manager service and insights into issues

and updates related to various entities and resources through dashboards like Classic Clusters,

Replication Policies, Notifications etc.

2. Classic Clusters Page

It is basically a status page for clusters, which specifies

- Total number of clusters enabled for Replication Manager

- Total number of clusters are in error state.

- Total number of clusters which are active.

- Total number of clusters for which a warning is issued.

3. Cloud Credentials page

This shows the registered cloud credentials for Replication Manager. If you are using Cloud Storage

like S3 then you must provide credentials to access those cloud storage. Currently supported Cloud

storage are S3 and Azure Blob Filesystem (ABFS). Hence, to add, update & delete cloud credentials

you have to use Cloud Credentials page.

4. Replication Policies page

This page shows the policies which are in

- Active state

- Suspended state

- Error state

- Total number of policies which are available in Replication Manager.

https://www.hadoopexam.com/

 5

HBase backups

HBase snapshots offer point-in-time table backups without data copies and minimum RegionServer

effect. These policies take frequent snapshots of HDFS and HBase.

Snapshots are backups that may be used to restore an HDFS directory or HBase table to a prior

version or another place on the same service. Replication uses snapshots. First-run replication

strategy replicates all data and metadata from directories. Subsequent replication policy runs

replicate updated data using HDFS snapshot diffs.

HDFS Replication

HDFS replication lets you transfer your HDFS data from one HDFS service to another, syncing the

data sets based on a replication strategy. The destination service must be controlled by the Cloudera

Manager Server setting up the replication, while the source service may be administered by the

same server or a peer. Specifying source and destination folders lets you duplicate HDFS data inside

a cluster. Remote Replication Manager replicates HDFS information with files. Locally backed up

HDFS metadata.

These rules replicate HDFS data and metadata from CDH (5.10+) to CDP Private Cloud Base (7.0.3+)

clusters.

Use HDFS replication policies for:

- Copying data from on-premises systems to Amazon S3 or Microsoft ADLS Gen2 (ABFS) cloud

buckets or vice versa.

- Replicating data to another cluster to conduct load-intensive operations optimises the main

cluster.

- Enterprise backup-restore solution.

Hive/Impala replication

Hive/Impala replication copies your Hive metastore and data from one cluster to another and

synchronises them depending on a replication strategy. These policies replicate HDFS, Hive external

tables (without manual translation of Hive datasets to HDFS datasets, or vice versa), Hive metastore

data, Impala metadata (catalogue server metadata) associated with Impala tables registered in the

Hive metastore, Impala data, and Sentry permissions to Ranger from CDH (5.10 and higher) to CDP

Private Cloud Base (7.0.3 and higher) clusters. In this case, apps that rely on Hive's external table

definitions update both replica and source.

Use replication policies to:

- Archive legacy or cold data.

- Run analytics on replicated or moved cloud data.

- Completely backup and restore data.

Sentry to Ranger replication

You may migrate Sentry rules for replicated Hive objects, Impala data, and URLs when creating or

editing a replication policy. In the target cluster, the Replication Manager translates Sentry policies

to Ranger policies. To replicate Sentry policies to Ranger, Cloudera Manager 6.3.1 is necessary.

Verifying the Replication on CDP

Once the Hive replication policy has successfully executed, the admin can perform the following

validations to ensure that replication was indeed successful:

https://www.hadoopexam.com/

 6

• HDFS data replication – The admin can enumerate the cloud storage path (S3 bucket path)

to verify whether the data was successfully copied in the specified bucket.

• Hive metadata replication – The admin can verify whether the specified source database,

along with tables, partitions, UDFs and column stats are indeed present in the Data Lake

HMS instance. For this, the admin can use a Data Hub cluster and run the corresponding

queries either via Hue or beeline.

• Ranger policies – Finally, the admin can query the Ranger policies to ensure that the Sentry

policies are properly mapped as Ranger policies for the right users and groups.

https://www.hadoopexam.com/
https://www.hadoopexam.com/Cloudera_Certification/CCA159/What_is_cloudera_certifications_CCA131_CCA175_CCA159_CCPDE575_Exam.html

Contents
Chapter-19: Cloudera Navigator Encrypt, Files System Encryption ... 1

Overview ... 1

Managing encryption keys .. 2

Chapter-19: Cloudera Navigator Encrypt, Files System Encryption

Overview

Many companies use SSL encryption so customers may access Hadoop data. With this integration,

encrypted wire communication may be observed. Integrating Navigator makes Kerberos and LDAP

authentication simpler as no keytab setting is needed. Cloudera Navigator enables audits,

information management, and policy enforcement for Hadoop. Cloudera Navigator Encrypt encrypts

and protects data at rest without changing apps and with minimum performance latency. Cloudera

Navigator Key Trustee Server and Navigator Encrypt's process-based access controls help enterprises

satisfy compliance laws and prevent unauthorised parties from accessing encrypted data. Navigator

has following main characteristics:

• Key Trustee Server stores encryption keys to isolate them from encrypted data. Without the

key, encrypted data is meaningless.

• Data is encrypted and decrypted transparently, with no performance effect and no

programme changes.

• Individual processes may access encrypted data. Changing the process prevents malicious

users from utilising customised application binaries to evade access restrictions.

• Navigator Encrypt's performance is increased by the Intel AES-NI cryptographic accelerator.

• Navigator Encrypt complies with HIPAA-HITECH, PCI-DSS, FISMA, EU Data Protection

Directive, and other standards.

• Debian, Ubuntu, RHEL, CentOS, and SLES are supported.

• Easy setup: Navigator Encrypt has RPM, DEB, and SLES KMP packages.

• Multiple mountpoints: Each has its own encryption key.

Navigator Encrypt can encrypt several types of data, including:

• Databases.

• Backups & Temporary File (YARN containers, spill files, and so on).

• Reports & Log Files.

• Directories.

• File settings.

Navigator Encrypt employs several encryption keys.

• Master Key: The master key is a single, dual, or RSA key file. Key Trustee Server caches the

master key. This key is used for Key Trustee Server registration and Navigator Encrypt client

administration.

• Mount Encryption Key: Navigator Encrypt generates this key using openssl rand by default,

although it may also use /dev/urandom. A new mount point generates this key. MEKs are at

each mount point. Key Trustee Server receives this key.

• Device Encryption Key: Navigator Encrypt or Key Trustee Server don't handle dmcrypt DEK.

dmcrypt stores it in the device's header.

Managing encryption keys

Key Trustee Server stores the master and mount encryption keys. Locally stored MEKs provide

offline recovery and quick access. Master key encrypts locally-stored MEKs. TLS/SSL certificates

secure Navigator Encrypt and Key Trustee Server.

The diagram below shows Navigator Encrypt and Key Trustee Server connection.

Local GPG key encrypts master key. It's encrypted again using the Key Trustee Server GPG key before

being saved. When Navigator Encrypt needs the master key, Key Trustee Server decrypts it using its

server GPG key and delivers it to the client, which decrypts it with its local GPG key. TLS encrypts all

communications.

https://www.hadoopexam.com/Cloudera_Certification/CCA159/What_is_cloudera_certifications_CCA131_CCA175_CCA159_CCPDE575_Exam.html

 1

Contents
Chapter-20: SSL and TLS Implementation on Cloudera CDP .. 1

Overview ... 1

About SSL Certificates ... 1

Renew expiring certificates ... 2

Truststores and Keystores ... 2

Manual vs. auto-TLS .. 5

SANs .. 7

Cloudera Manager Auto-TLS TLS Encryption .. 7

Manual TLS setup .. 7

Chapter-20: SSL and TLS Implementation on Cloudera CDP

Overview

Transport Layer Security (TLS) 1.2 is a collection of industry-standard cryptographic protocols for

safeguarding network connections. TLS is the successor of Secure Sockets Layer (SSL). The actual

protocol utilised is TLS. SSL is not implemented inside Cloudera software.

HDFS and HBase use remote procedure calls to transport data (RPCs). To safeguard this

transmission, RPC encryption must be enabled.

About SSL Certificates

TLS/SSL encrypts packets sent between endpoints to protect privacy and data integrity (ports on a

host, for example). Configuring TLS/SSL requires establishing a private key and public key for server

and client processes to negotiate an encrypted connection at runtime. TLS/SSL may employ

certificates to validate the trustworthiness of negotiation keys to avoid spoofing and other security

concerns.

Using TLS/SSL involves producing a private key, public key, and keystore, among other duties. Adding

a certificate to the keystore may be the final step, but the lead time depends on the sort of

certificate you want to use.

A certificate is digitally signed by a certificate authority (CA), which indirectly validates the public key

given during negotiation. Table shows three methods to sign certificates.

Type Usage Note

Public CA-
signed
certificates

This certificate is signed by Symantec or Comodo. Public CAs are trustworthy
third-parties whose certifications may be validated publicly. This kind of
certificate simplifies deployment since the Java JDK and its default truststore
incorporate security infrastructure, such as root CAs.

https://www.hadoopexam.com/

 2

Type Usage Note

Internal CA-
signed
certificates

Internal CA signs this certificate. This certificate may be used by OpenSSL,
Microsoft Active Directory, or another internal CA system.

Self-signed
certificates

Production deployments discouraged. Self-signed certificates are suitable for
non-production deployments like proof-of-concept.

During TLS/SSL cluster configuration, you receive a certificate for each host and re-use it for the

host's services (daemon roles). Cloudera cluster components enable wildcard domains and

SubjectAlternateName certificates instead of generating individual certificates for each server.

SAN and Wildcard Domain Certificates

CDP and Cloudera Manager support wildcard and SAN certifications. A wildcard certificate

(*.example.com) may be used for any number of first-level subdomains inside a single domain.

Wildcard certificates may be used with host-1.example.com, host-2.example.com, etc.

Wildcard certificates minimise the cost of public CA certificates. Using wildcard certificates makes it

simpler to encrypt transitory and growing clusters, as the same certificate and keystore may be

utilised. Wildcard domain certificates are insecure. Because all nodes share the same certificate, a

compromise on one may affect others.

Wildcard Certificates All domain hosts may utilise wildcard certificates. Using wildcard
certificates for all cluster servers reduces expenses but increases
risk.

SubjectAlternativeName
Certificates

SAN certificates are tied to DNS names. All or a subset of cluster
hosts may utilise a single SAN certificate. Cloudera Manager HA
uses SAN certificates.

Renew expiring certificates

Public or internal CA-signed certificates expire. Most cluster operations fail with expired certificates.

Cloudera Manager Agent hosts cannot verify the Cloudera Manager Server host and cannot deploy

cluster nodes. When deploying certificates to cluster nodes, administrators should notice expiry

dates and establish reminders to renew.

Truststores and Keystores

Java Keystore and Truststore

All clients in a TLS/SSL-configured Cloudera Manager cluster require access to the truststore to verify

certificates. The certificates guarantee the client or server that the issuing authority is authentic.

https://www.hadoopexam.com/

 3

The default Oracle Java JDK truststore (cacerts) contains Symantec's root certificate. Cloudera

prefers jssecacerts over the default truststore. Copying cacerts to that filename creates the

alternative truststore (jssecacerts). Additional roles or services may add certificates to this

truststore. Startup Hadoop daemons load this truststore.

For Cloudera clusters, jssecacerts must start as a copy of cacerts since cacerts includes the default

certificates required to create the chain of trust during the TLS/SSL handshake. After jssecacerts is

formed, the cluster adds public and private root CAs. Configure TLS encryption for Cloudera Manager

on each cluster host. The private keys are maintained in the keystore.

As setup for Cloudera Manager Server and CDP clusters, the keystore and truststore are separate

files. Each server in a Cloudera Manager Server cluster needs its own keystore but may share a

truststore.

Keystore Truststore

Used by the server side of a TLS/SSL client-server

connection.

Used by the client side of a TLS/SSL client-server

connection.

Typically contains 1 private key for the host

system.

Contains no keys of any kind.

Contains the certificate for the host's private key. Contains root certificates for well-known public

certificate authorities. May contain certificates

for intermediary certificate authorities.

Password protected. Use the same password for

the key and its keystore.

Password-protection not needed. However, if

password has been used for the truststore, never

use the same password as used for a key and

keystore.

Password stored in a plaintext file read

permissions granted to a specific group only (OS

filesystem permissions set to

0440, hadoop:hadoop).

Password (if there is one for the truststore)

stored in a plaintext file readable by all (OS

filesystem permissions set to 0440).

No default. Provide a keystore name and

password when you create the private key and

CSR for any host system.

For Java JDK, cacerts is the default unless the

alternative default jssecacerts is available.

Must be owned by hadoop user and group so that

HDFS, MapReduce, YARN can access the private

key.

HDFS, MapReduce, and YARN need client access

to truststore.

https://www.hadoopexam.com/

 4

The table above contains facts about the Java KeyStore (JKS) format, which is utilised by Java-based

cluster services such as Cloudera Manager Server, Cloudera Management Service, and many CDP

components and services.

CDP Services as TLS/SSL Servers and Clients

Cluster services are TLS/SSL servers, clients, or both.

Component Client Server

HBase

HDFS

Hive

Hue (Hue is a TLS/SSL client of HDFS, MapReduce, YARN, HBase, and
Oozie.)

MapReduce

Oozie

YARN

ZooKeeper

Start-up TLS/SSL daemons load keystores. When a client connects to a TLS/SSL server daemon, the

server sends the client its starting certificate, and the client uses its truststore to verify it.

Cluster Components (JKS, PEM)

Many CDP services employ JKS keystores and certificates, including Cloudera Manager Server and

Cloudera Management Service. Cloudera Manager Agent, Hue, Key Trustee Server, Impala, and

other Python or C++ services need PEM certificates and keystores. PEM certificates comply to PKCS

#8, which needs Base64-encoded certificate and private key files. The table lists many certificate

kinds.

Component JKS PEM

HBase

HDFS

Hive (Hive clients and HiveServer 2)

Hue

Impala

MapReduce

Oozie

Solr

YARN

https://www.hadoopexam.com/

 5

Component JKS PEM

ZooKeeper

Cloudera Manager keystores and truststores should be:

• Separate each host's keystore. Each keystore should have a name that identifies the host

type—server or agent. Password-protect the keystore containing the private key.

• Create a cluster-wide truststore. This truststore comprises root and intermediate CAs

required to authenticate TLS/SSL certificates. Truststore isn't password-protected.

Manual vs. auto-TLS

Transport Layer Security (TLS) is the most used wire encryption protocol. TLS encrypts packets

between endpoints to offer authentication, privacy, and data integrity. Applications employ REST

APIs or Thrift to interface with Hadoop clusters.

TLS manual configuration

Step-1: Get Certificates

• Each host should generate a public/private keypair.

• Create CSRs for all hosts.

• Internal Certificate Authority should sign the CSR (CA).

• Generate keystore and truststore on all cluster hosts.

Step-2: Cluster Configuration

• Set TLS keystore and truststore for each service.

• Before enabling TLS for another service, restart the affected components.

• Change the cluster manager's UI (like setting up truststore, Enabling Knox SSL, etc.)

Step-3: Upkeep

• New service installation requires configuring the keystore and truststore. Start affected

services.

• Each new cluster host must follow the "Get Certificates" procedures (only for the new

hosts).

• Pre-expiring certificates are cycled.

Cloudera Manager's Auto-TLS

In big deployments, the aforementioned method might be time-consuming and cause operational

problems. Auto-TLS automates cluster-level TLS encryption. Using Auto-TLS, you may let Cloudera

administer the cluster's Certificate Authority (CA) or utilise the company's CA. In most

https://www.hadoopexam.com/

 6

circumstances, Cloudera Manager's UI enables all essential actions. The following procedures are

automated.

Cloudera Manager as a CA:

• Creates the root Certificate Authority or a Certificate Signing Request (CSR) for generating an

intermediate Certificate Authority (CA)

• Signs host CSRs automatically.

Always do these

• Creates hosts' keystore and truststore.

• Deploys the cluster's certificates, keystore, and truststore.

• Configuring the keystore and truststore from a role instance specific directory enables TLS

for all cluster services.

• Cloudera Manager server and agents get TLS.

• After this initial configuration, TLS is automatically activated on new services, hosts, and

compute clusters.

• Automates certificate rotation.

When starting a new cluster on a Cloudera Manager with Auto-TLS enabled, you may use one of

these options. The following notice should appear when you begin the wizard to build a new cluster.

When you install the cluster, all services will be encrypted.

Auto-TLS speeds up initial wire encryption setup and automates cluster TLS settings. The table below

compares blog choices. Auto-TLS minimises the TLS administration overhead of your cluster, offering

improved security with decreased operational overhead and let you concentrate on customers and

workloads.

https://www.hadoopexam.com/

 7

Steps
HDP/EDH
(manual)

CDP Private Cloud use case
1 - Using Cloudera Manager
to generate an internal CA

and corresponding
certificates

CDP Private Cloud
use case 2 -

Enabling Auto-TLS
with an existing

Root CA

CDP Private Cloud
use case 3 -

Enabling Auto-TLS
with Existing
Certificates

Generate CSR Manual Automated Automated Manual

CSR Signed by
CA

Manual Automated One-time Manual

Deploy
certificate to all
hosts

Manual Automated Automated Automated

Configuration
for each
service

Manual Automated Automated Automated

Cluster restarts Multiple Once Once Once

Configuration
steps

Manual Automated Automated Automated

New Service
steps

Manual Automated Automated Automated

New Host cert.
generation

Manual Automated Automated Manual

SANs

A SubjectAlternativeName (SAN) certificate employs the SubjectAlternativeName extension to

include multiple host names. Auto-TLS only supports SAN certificates with custom certificates.

Internal Cloudera Manager Certificate Authority doesn't support SAN certificates.

Cloudera Manager Auto-TLS TLS Encryption

Auto-TLS simplifies Cloudera Manager TLS configuration. There are three different use cases, we can

use to configure Auto TLS as described one by one below.

Manual TLS setup

Auto-TLS is recommended for Cloudera Manager and CDP TLS encryption. Auto-TLS automates

cluster-level TLS encryption. Using Auto-TLS, you may let Cloudera administer the cluster's

Certificate Authority (CA) or utilise the company's CA. In most circumstances, Cloudera Manager's UI

enables all essential actions.

Cloudera Manager Server distributes Kerberos keytabs and password-protected configuration files

to cluster hosts when you establish authentication and authorisation. Cloudera Manager Server and

all cluster hosts must use TLS encryption to safeguard this transmission. HTTPS client connections to

Cloudera Manager Admin Interface employ TLS encryption.

Cloudera Manager supports TLS. Without certificate authentication, a malicious user may add a host

to Cloudera Manager by installing and configuring Cloudera Manager Agent. Install certificates on

each agent host and configure Cloudera Manager Server to trust them.

https://www.hadoopexam.com/

 8

Get Full Version Contents from this link

https://www.hadoopexam.com/
https://www.hadoopexam.com/Cloudera_Certification/CCA159/What_is_cloudera_certifications_CCA131_CCA175_CCA159_CCPDE575_Exam.html
https://www.hadoopexam.com/Cloudera_Certification/CCA159/What_is_cloudera_certifications_CCA131_CCA175_CCA159_CCPDE575_Exam.html

 1

Contents
Chapter-21_Kerberos_Authentication ... 1

Overview ... 1

About Kerberos ... 2

Kerberos Principals ... 2

About Kerberos Keytabs ... 3

About Delegation Tokens .. 3

Understanding Token Format ... 3

Kerberos Authentication Process .. 3

Kerberos and Token Renewal ... 4

Kerberos CDP configuration .. 4

Chapter-21_Kerberos_Authentication

Overview

Users and services must authenticate their identity to access a system resource via authentication.

Organizations handle user identification and authentication using time-tested technologies including

pluggable authentication modules (PAM), Lightweight Directory Access Protocol (LDAP) for identity,

directory, and other services, and Kerberos for authentication.

Cloudera clusters support these technologies. Organizations having existing LDAP directory services

such as Active Directory (included in Microsoft Windows Server's Active Directory Services) may

utilise existing user accounts and group listings instead of establishing new accounts across the

cluster. User role authorisation may be supported via Active Directory or OpenLDAP.

Pluggable authentication modules (PAM) are standard Linux modules for external authentication.

PAM setup in Cloudera Manager is easier than LDAP, and administrators may install additional PAM

modules to provide new authentication methods. Cloudera Manager does not allow multiple LDAP

servers, but you may set PAM to synchronise with them using SSSD. Cloudera Manager may be

configured to utilise Apache Knox for authentication and PAM for LDAP lookups.

Cloudera supports Kerberos and Active Directory authentication. Active Directory supports Kerberos

in addition to LDAP for identity management and directory capabilities. Kerberos offers robust

authentication, which means cryptographic procedures are utilised instead of passwords.

Both systems exist. Microsoft Active Directory is an LDAP directory service that offers Kerberos

authentication, and Kerberos credentials may be stored and managed in LDAP. Kerberos

authentication may be used with Cloudera Manager Server, CDP nodes, and Apache Hive, Hue, and

Impala. Cloudera does not implement Kerberos but may utilise MIT Kerberos or Microsoft Server

Active Directory and its KDC for authentication. Configuring the cluster to utilise Kerberos needs

https://www.hadoopexam.com/

 2

administrator access to the KDC (KDC). The approach may need troubleshooting Cloudera Manager

and KDC difficulties.

AllowTgtSessionKey must be deactivated to utilise Microsoft Active Directory as a KDC (set to 0).

Despite the "Successful" message at the conclusion of configuration/integration, users and

credentials are not generated if this registry entry is enabled. Before setting Active Directory as a

KDC, set AllowTgtSessionKey to 0 if required.

Cloudera Server and CDP services install local Linux user:group accounts on each node's host OS.

Local user:group accounts are translated to LDAP-compliant directory service user accounts and

groups to apply per-node authentication and authorisation across all cluster nodes.

Cloudera suggests utilising SSSD or Centrify Server Suite to authenticate each cluster node to the

LDAP directory.

About Kerberos

Cloudera Clusters employ principals, keytabs, and delegation tokens. Cloudera uses Kerberos for

authentication since native Hadoop authentication only checks for legitimate user:group

membership in HDFS, not across all network resources. The Kerberos protocol authenticates a user

or service for a limited duration, and each service the user wants to access needs the right Kerberos

artefact. This section shows how Cloudera clusters employ Kerberos principals and keytabs for user

authentication and how delegation tokens authenticate tasks on behalf of authorised users during

runtime.

Kerberos Principals

Each user and service that requires Kerberos authentication needs a principal, which uniquely

identifies them across numerous Kerberos servers and subsystems. A principal has up to three

identifiers, beginning with the user or service name (called a primary). The main element of the

principal is usually the user account name from the operating system, such as jcarlos for a Unix

account or hdfs for a Linux account connected with a service daemon on a cluster node.

User principals consist of the main and Kerberos realm name. The realm is a logical collection of

principles related to the same Key Distribution Center (KDC) with similar attributes, such as

encryption techniques. Large businesses may utilise realms to delegate management for particular

users or functions and distribute authentication-processing activities across different servers.

As illustrated in this user principal pattern, utilise your organization's domain name as the Kerberos

realm name (in all capital letters).

username@REALM.HADOOPEXAM.COM

Primary and realm names identify users. amit@REALM1.HADOOPEXAM.COM and

amit@REALM2.HADOOPEXAM.COM may be the same person. For service role instance IDs, the

primary is the Hadoop daemons' Unix account name (hdfs, mapred, etc.) followed by the host's

instance name. An HDFS instance's principal is

https://www.hadoopexam.com/

 3

hdfs/hostname.fqdn.example.com@REALM2.HADOOPEXAM.COM. Forward slash (/) separates main

and instance names.

service-name/hostname.fqdn.example.com@REALM.HADOOPEXAM.COM

HTTP is the main principle for Hadoop web service interfaces, not Unix. An instance name helps

identify administrators. Principals amit@REALM2.HADOOPEXAM.COM and

amit/admin@REALM2.HADOOPEXAM.COM have separate passwords and rights. Example principle

for HDFS service role instance operating on a cluster in an organisation with realms for each

geographic location:

hdfs/hostname.fqdn.example.com@MUMBAILAND.HADOOPEXAM.COM

The service name is the Unix account name used by the service role instance, such as hdfs or

mapred. The HTTP principal for Hadoop web authentication has no Unix account, hence HTTP is the

main.

About Kerberos Keytabs

A keytab includes a principal's encrypted key. Each host's keytab file for a Hadoop daemon includes

the hostname. This file authenticates a host's principal to Kerberos without a password or human

intervention. Access to keytab files should be securely guarded since they enable acting as a

principal. They should be viewable by a small number of users, saved on local disc, and not included

in host backups unless backup access is as secure as local host access.

About Delegation Tokens

A keytab includes a principal's encrypted key. Each host's keytab file for a Hadoop daemon includes

the hostname. This file authenticates a host's principal to Kerberos without a password or human

intervention. Access to keytab files should be securely guarded since they enable acting as a

principal. They should be viewable by a small number of users, saved on local disc, and not included

in host backups unless backup access is as secure as local host access.

Understanding Token Format

NameNode generates tokens using a random masterKey. All current tokens' expiration dates are

maintained in memory (maxDate). Delegation tokens may expire when the expiration date is

reached or be cancelled by the owner. Deleted tokens are expired or cancelled. The

sequenceNumber identifies tokens. The next section explains Delegation Token authentication.

TokenID = {ownerID, renewerID, issueDate, maxDate, sequenceNumber}

TokenAuthenticator = HMAC-SHA1(masterKey, TokenID)

Delegation Token = {TokenID, TokenAuthenticator}

Kerberos Authentication Process

The client delivers the TokenID to NameNode to begin authentication. NameNode utilises TokenID

and masterKey to construct the Delegation Token. If NameNode discovers the token in memory and

the current time is less than the token's maxDate, the token is valid. If legitimate, the client and

NameNode will authenticate each other using their TokenAuthenticator secret key and MD5

https://www.hadoopexam.com/

 4

protocol. Since the client and NameNode don't exchange TokenAuthenticators, tokens aren't

jeopardised if authentication fails.

Kerberos and Token Renewal

The authorised renewer renews delegation tokens regularly (renewerID). Authenticating to the

NameNode is required if a NodeManager is the specified renewer. It sends the token to NameNode

for authentication. Before renewing the token, NameNode validates the following:

• The requested NodeManager matches the token's renewerID.

• The NameNode's created TokenAuthenticator matches the one it previously stored.

• maxDate must be later than now.

NameNode sets the new expiration date to min(current time+renew period, maxDate) if the token

renewal request is successful. NameNode will lose all memory tokens if it's restarted. In this

situation, the token is kept with a new expiration date. After a restart and before relaunching

unsuccessful tasks, authorised renewers must renew all tokens with the NameNode.

A specified renewer may revive an expired or cancelled token if the current time doesn't exceed

maxDate. Only the masterKey stays in memory, thus the NameNode cannot distinguish the

difference between a cancelled or expired token and one deleted by a restart. Update masterKey

often.

Kerberos CDP configuration

Kerberos configuration options for Cloudera Data Platform (CDP).

 A. Direct integration of

Cloudera Manager with

AD/MIT/IPA KDC

B. Keytab retrieval

through “keytab retrieval
script"

C. Manual

deployment /

configuration of

keytab for services

Brief description

of functionality

Cloudera Manager may

create/delete service

principals directly in the

KDC and automatically

retrieve keytabs.

Cloudera Manager calls

an external script to get a

principal's keytab.

Cloudera Manager

will keep

keytab/kerberos

related settings for

A or B column

services, but we

will override the

default keytab

location using a

"Safety Valve"

option.

Example Default/recommended

configuration.

• Cloudera Manager

may construct

missing

principals/keytabs

• Internal

restrictions/policy

prevent direct

AD/KDC

integration.

• Integration of

unsupported KDC

External variables

may need

customising

keytabs.

https://www.hadoopexam.com/

 5

after adding new

services/role

instances.

• Cloudera Manager

can rebuild

existing

principals/keytabs.

types with

Cloudera

Manager.

Principal naming

convention

CDP Kerberos principals

are service/fqdn@REALM.

Most services utilise a

single username for all

roles (such "hdfs" or

"hive"). A single service

will likely require many

principals, where the

username is the same and

the hostname matches

one of the hosts where

this service is executing.

Hadoop Users

(user:group) and Kerberos

Principals list default

service usernames.

Cloudera clusters may be manually setup to utilise Kerberos or configured via the Cloudera Manager

Admin Console configuration wizard. The wizard automates numerous configuration and

deployment chores. Enabling Kerberos for the cluster via the wizard enables Kerberos for all CDP

components.

Configure TLS/SSL before enabling Kerberos authentication. Kerberos keytabs are sent unencrypted

if not.

Cloudera Manager's Kerberos wizard verifies the cluster's Kerberos instance. Before utilising the

wizard, obtain all Kerberos service data or ask the administrator for assistance. The wizard pages

need numerous Kerberos information.

The wizard needs a functional MIT, FreeIPA, or Active Directory KDC. Before beginning the wizard,

make sure KDC is functional. Wizard prompts need administrator-level Kerberos access. If you lack

these credentials, the Kerberos administrator must help you.

Cloudera Manager has many authentication methods. Cloudera Manager can authenticate users

against its database or an external service. The external authentication service might be an LDAP

server or another external service. Cloudera Manager supports SAML single sign-on.

If you're using LDAP or another external service, you may set Cloudera Manager to utilise both kinds

of authentication (internal database and external service) and the order in which it searches. Full

Administrators may always authenticate against the Cloudera Manager database using an external

authentication method. This avoids locking out everyone if authentication settings are wrong, such a

https://www.hadoopexam.com/

 6

faulty LDAP URL. External authentication lets you limit login access to specified groups and provide

their members Full Administrator access to Cloudera Manager.

Cloudera Manager appears in the User Type field for database users. External is the User Type field

for LDAP and other external authentication users.

https://www.hadoopexam.com/
https://www.hadoopexam.com/Cloudera_Certification/CCA159/What_is_cloudera_certifications_CCA131_CCA175_CCA159_CCPDE575_Exam.html

 1

Contents
Chapter-23: Cloudera CDP DataWarehouse ... 1

Overview ... 1

Data Warehouse Cloudera Service ... 2

Architecture of Cloudera Data Warehouse... 2

Analytics Experiences .. 4

Key Features of Cloudera Data Warehouse .. 5

Chapter-23: Cloudera CDP DataWarehouse

Overview

Data Warehouse is a CDP Cloud data service for establishing autonomous, self-service data

warehouses and data marts that autoscale. The Data Warehouse service offers isolated compute

instances for each data warehouse/mart, automated optimization, and cost-saving SLAs. Data

Warehouse clients using CDP Public Cloud have a separate runtime. Apache Hive, Apache Impala

SQL, and the Hue interactive SQL editor for testing queries and sampling data, included in Data

Warehouse. Turn any data into business insights. CDP Data Warehouse allows IT to provide BI

analysts with cloud-native self-service analytics in minutes. It outperforms rival data warehouses on

all sizes and kinds of data, including structured and unstructured.

Data Warehouse on CDP integrates streaming, data engineering, and machine learning analytics. It

has a unified architecture that protects and governs data and information on private, public, or

hybrid clouds.

Deliver business insights based on huge amounts of verified data to thousands of users quickly and

on a large scale, without sacrificing compliance or going over budget. Cloudera Data Warehouse

outperforms shadow IT by keeping up with changing business needs and meeting SLAs with self-

https://www.hadoopexam.com/

 2

service access to reports, dashboards, and advanced analytics. It does this by moving workloads

from on-premises to any cloud in a smooth and secure way.

Data Warehouse Cloudera Service

Cloudera Data Warehouse (CDW) Data Service is a containerized application for establishing highly

performant, autonomous, self-service data warehouses in the cloud.

Cloudera Data Platform (CDP) lets you build Data Mesh, Data Fabric, and Data Lakehouse. CDP

provides a Data Lakehouse architecture by pre-integrating and unifying Data Warehouses and Data

Lakes to assist data engineering, BI, and machine learning. Cloudera's support for an open data

lakehouse focused on CDW simplifies data management for data practitioners and administrators.

CDW integrates with Cloudera's data ingestion, engineering, machine learning, and visualisation

services. CDW uses Apache Iceberg, Apache Impala, Hive ACID, and Hive table format to support

wide workloads.

CDW enables rapid reaction times, high concurrency, simple data exploration, and business insight

on Data Lake corporate data. CDW streamlines application development via open standards, file

formats, and APIs. By isolating tenants' duties, CDW can fulfil report deadlines and reduce

expenditures.

CDW streamlines multi-tenancy management and decreases cloud expenditures for admins. Virtual

Warehouses may be deployed on-demand and de-provisioned when idle. Administrators may

update Virtual Warehouses and Database Catalogs individually. CDW lets you choose the version of

Hive, Impala, and Hue.

Architecture of Cloudera Data Warehouse

Administrators and IT teams may see how Cloudera Data Warehouse (CDW) service components fit

within the CDP architecture. The CDW service consists of decoupled Database Catalogs (storage for a

Virtual Warehouse) and Virtual Warehouses (compute environments that may access a Database

Catalog). Multiple Virtual Warehouses of different sizes and kinds may run on the same Database

Catalog, providing workload variety and isolation.

https://www.hadoopexam.com/

 3

Database Catalogue

A Database Catalog contains table and view metadata, security permissions, and other data. Each

Database Catalog has a Hive metastore (HMS) that stores data definitions. All your environment's

data is in a secure object storage. A Database Catalog provides temporary Virtual Warehouse user

and workload contexts and governance artefacts for auditing. Database Catalog is queried by many

Virtual Warehouses. Multiple Database Catalogs may exist.

A default Database Catalog is established when you activate an environment from the Data

Warehouse. The default Database Catalog shares HMS with Data Hub. You may access Data Mart or

Data Engineering items or data sets from CDW Virtual Warehouses and vice versa. Queries and

query history kept in Hue are not destroyed when a Virtual Warehouse is removed. When you install

a non-default Database Catalog, Hue may import demo data.

Virtual Warehouses

Virtual Warehouses are Kubernetes instances that perform queries. Access Data Lake tables and

views from a Virtual Warehouse. Virtual Warehouses bind computing and storage by running

approved database queries. Virtual Warehouses can grow automatically and assure good

performance. Querying the virtual warehouse requires JDBC/ODBC-compliant tools. Virtual

Warehouses offer HS2-compatible endpoints for Beeline, Impala-Shell, and Impala.

https://www.hadoopexam.com/

 4

Data Visualization

CDW incorporates Data Visualization for developing data visualisations, dashboards, and visual

applications based on CDW data or other data sources you connect to. Authorized users may study

CDP data using pie charts and histograms. Dashboards allow collaborative examination of graphics.

Analytics Experiences

Task-1: Exploring a Data Lake

Description: Cloudera Data Warehouse's Virtual Warehouse lets you examine airline database

tables in your data lake. You load airline information. You query tables. Set up a simple Virtual

Warehouse to examine a data lake. Data lake exploration doesn't need auto-scaling or extra

features. After exploring, remove Virtual Warehouse.

Step-1: Navigate to Data Warehouse > Database Catalogs > Add New.

Step-2: In New Database Catalog, in Name, specify a Database Catalog name.

Step-3: In Environments, select the name of your environment activated from Cloudera Data

Warehouse.

Step-4: Accept default values for the image version and data lake type (CDW). For example:

Step-5: Turn on Load Demo Data to explore sample airline data from Hue, and click Create. For

example,

https://www.hadoopexam.com/

 5

Step-6: Click Virtual Warehouses > Add New.

Step-7: Set up the Virtual Warehouse:

o Specify a Name for the Virtual Warehouse.

o In Type, click the SQL engine you prefer: Hive or Impala.

o Select your Database Catalog and User Group if you have been assigned a user

group.

o In Size, select the number of executors, for example xsmall-2Executors.

o Accept default values for other settings.

Step-8: Click Create.

Step-9: After your Virtual Warehouse starts running, click Hue, and expand Tables to explore

available data.

Step-10: Explore data lake contents by running queries. For example, select all data from the

airlines table.

Key Features of Cloudera Data Warehouse

Self-service provisioning/administration: Start examining datasets from an intuitive data catalogue

in minutes. Auto-scaling and auto-suspend provide zero-touch provisioning and management of data

warehouses.

https://www.hadoopexam.com/

 6

Unmatched scale and volume: High-performance SQL engines like Impala and Hive LLAP provide

sub-second query response times for huge datasets (150PB+). Workload separation and optimization

unblock hundreds of people and thousands of use cases on the same data.

Real-time data kinds: Add machine log, event stream, IoT sensor, media, and sentiment data to

standard datasets. Make all data available in a single catalogue for dashboards, reporting, ad-hoc,

and exploratory analytics.

Tools for queries and optimization: A set of tools, like Data Visualization, Hue, and Workload XM,

that make it easy to explore, visualise, and query datasets and optimise workload health for

maximum efficiency.

Using analytics for the whole lifecycle of data: Unlock the potential of data for thousands of users

and hundreds of thousands of use cases. Workload isolation and optimization, auto-scaling, and

easy-to-use web-based self-service tools make sure that everyone can do their work on the same

data without stepping on each other's toes.

Data visualisation: CDP Data Visualization lets users build and publish custom dashboards and

analytic applications in minutes. This makes it easy and quick to make interactive dashboards and

share insights across your business. Use easy-to-use tools and instant sharing of insights across your

business to help teams work together well.

https://www.hadoopexam.com/
https://www.hadoopexam.com/Cloudera_Certification/CCA159/What_is_cloudera_certifications_CCA131_CCA175_CCA159_CCPDE575_Exam.html

 1

Contents
Chapter-24: Cloudera Operational Database ... 1

Overview ... 1

Cloudera Operational Database Benefits & Characteristics ... 2

Practical Examples of COD .. 2

Deep Understanding of CDP OpDB ... 4

Cloudera OpDB and NoSQL ... 5

Operation Database Security .. 6

Chapter-24: Cloudera Operational Database

Overview

Cloudera Operational Database serves both structured and unstructured data on a single end-to-end

open-source platform. This makes sure that decisions are based on stream processing and real-time

analytics on data that is always changing. Users can serve real-time data at scale with high

concurrency and low latency, and they can do data science at scale to make it easy to build, score,

and put machine learning models into production.

COD is a Cloudera Data Platform service (CDP). COD creates a new operational database with one

click and auto-scales depending on workload. Cloudera Operational Database is a real-time, always-

available, scalable operational database that handles structured and unstructured data.

Apache HBase and Apache Phoenix power Cloudera ODBC. Apache HBase is used as a datastore in

Cloudera Operational Database, using HDFS and/or S3 as storage. You may use Apache HBase API or

Apache Phoenix to access data. Apache Phoenix is an ANSI SQL layer. It operates on Apache HBase

and allows SQL queries and Apache Phoenix commands to manage data. Cloudera Operational

Database is cloud- and on-premises-ready.

https://www.hadoopexam.com/

 2

You set up COD on a public cloud infrastructure, which gives you features and flexibility that your

hardware on-premises can't always give you. Using a CDP environment that is already set up, you

can quickly make a working database with just one click. You can start a database with the same

reliable and consistent storage technology you may already be familiar with if you have used CDH or

HDP, but without any of the legacy complexity.

Cloudera Operational Database Benefits & Characteristics

You instal COD on a public cloud architecture, which offers features and flexibility that on-premises

hardware can't. You may construct an operational database with a single click in an existing CDP

system. You may start a database using CDH or HDP's durable and consistent storage technology,

but without the legacy complexities.

Data Access: Apache HBase Java API, Phoenix JDBC driver, or Phoenix thin client JDBC driver may

access COD data. CDP components and experiences may also aid data ingress.

SDX Cloudera support: Cloudera SDX Data Lake gives COD standard security, auditing, and lineage

features. COD instances for R&D environments may be paused and resumed to save cloud costs.

Auto-scaling: Your database's capabilities may expand to manage rising traffic and decrease to

minimise expenses without affecting availability. COD monitors services and accumulates metrices.

By evaluating gathered metrics, COD achieves latency requirements. COD improves with time. COD

analyses underlying services and automatically scales them to meet latency and RPC metrics. COD

lets you construct a cluster rapidly and features auto-scaling for varied workloads.

Auto-healing: COD monitors the clusters and fixes them if a problem occurs. COD monitors the CDP

cluster instances and recreates damaged or missing instances.

Practical Examples of COD

Complete circle of care for the customer:

https://www.hadoopexam.com/

 3

• To counteract the far-reaching consequences of the change in consumer expectations, your

company should enable a comprehensive picture of your consumers across all of your goods,

systems, devices, and interaction channels.

• Make sure the experience you provide is consistent, tailored to the user, and relevant to

their current situation.

• Models for predicting customer turnover may be used to hone in on potentially vanishing

clients and implement preventative retention measures.

Putting Things Together:

• Make sure there is enough capacity for all users to access data with minimal latency and

high concurrency.

• Create data-driven apps to share specialised, easily understood data across departments.

Time-series:

• Decision-making touchpoints should include real-time data and analysis.

Technology geared for the end user:

• Enable direct delivery of analytics to users of mobile and web apps.

• Applications may make use of this data structure as a key-value store.

• Model-based scoring and serving should be put into operation.

• Models for operational data that may be used for prevention, optimization, prescription,

and prediction can be built and scored.

• Raising the success rate of cross-selling and upselling efforts.

• Accurately estimate a customer's creditworthiness and lifetime value.

Management of fraud and security risks:

• Implement serving and detecting fraud models.

Internet of Things - Managing Operations and Generating Revenue:

• Use the Internet of Things to improve your company's operations and model.

• Through continuous monitoring, alerting, and troubleshooting in real time, you can always

know how your fleet is doing.

• Create monetary benefit by opening up opportunities for novel business configurations.

• Raising the success rate of cross-selling and upselling efforts.

Superiority in operation:

• Total cost of ownership (TCO), efficiency, and threat mitigation are all ways to move toward

operational excellence.

• By actively collecting and monitoring data from the network, downtime may be reduced via

preventative measures.

https://www.hadoopexam.com/

 4

• Maximize productivity while minimising overhead by analysing data in real time from

connected devices.

Deep Understanding of CDP OpDB

When it comes to serving both old structured data and new unstructured data inside a unified

Operational and Warehousing platform, Cloudera's Operational Database (OpDB) in CDP delivers.

Within a single, open-source framework, Cloudera feeds both conventional structured data and

emerging unstructured data from its operational database.

The usefulness of the operational database is best shown by the following.

• Apply machine learning and AI in the real world to alter industries like healthcare, public

services, and more.

• Provide web-scale, real-time content.

• Facilitate the application of big data analytics in offline settings.

• It may be used as a reliable data repository.

Both a completely secure, semi-managed service in CDP Public Cloud - Data Hub and a fully

configurable offering in CDP Data Center are already available, with the latter being identical to what

https://www.hadoopexam.com/

 5

is previously offered in CDH and HDP. Depending on your desired deployment method and OpDB

requirements, a suitable format may be selected. Apache HBase writes its data files, or HFiles, to an

object store like Amazon S3, while its write-ahead logs, or WALs, are saved to HDFS in the

production database.

These parts make up CDP's operating database:

• SQL interface for Apache HBase, known as Phoenix.

• With Apache HBase, you can store an infinite quantity of data on a single platform and

accommodate rising needs for data serving because of its built-in scalability.

• Apache ZooKeeper functions as a name registry, a synchronisation service, and a distributed

configuration service.

• With the help of Apache Knox Gateway, businesses can easily open their networks to new

users without worrying about breaching any security measures.

• The Apache HBase WALs are written using Apache HDFS.

• The Apache HBase HFiles are kept in an object storage, such Amazon S3 or Microsoft ADLS

Gen2.

• Data security and management tools are provided by Shared Data Experience (SDX). All data

and workloads share the same set of security and governance regulations.

• IDBroker is a Representational State Transfer (REST) API that was developed for use with

Apache Knox's authentication features. It enables a verified user to trade in their credentials

or token for access tokens from a cloud provider.

Cloudera OpDB and NoSQL

Document Store: The Operational Database (OpDB) from Cloudera is multi-model because it can

work with a wide variety of object models out of the box. Key-value, wide-column, and relational

databases are all available, and users may even provide their own object model.

Nifi and Hive may be used to convert and store many models, including JSON and XML, while Hive

can be used to store models natively as key-value pairs and query them. You may add support for

JSON and XML with JSONRest's custom implementation features.

Object Store: Direct support for durable object storage like Azure Data Lake Store and S3 is available

in Cloudera's OpDB (AWS native and implementations like Ceph). HBase's store files, which contain

the majority of the database, may be backed up to an object store.

HDFS-integration: Cloudera's significant presence in Hadoop enables close interaction with HDFS.

Snapshots, Export from operating systems, or moving underlying files (HFiles on HDFS) offline might

export data.

Spark-integration: OpDB supports Spark. Spark may access tables as external data sources or sinks

via many integrations. Spark-SQL works with DataFrames and DataSets.

DataFrame and DataSet support all catalytic optimization approaches. This achieves data locality,

partition pruning, predicate pushdowns, scanning, and BulkGate. Co-locating Spark worker nodes on

the cluster enables data locality. OpDB read/write is supported.

Each table needs a catalogue. This catalogue comprises the row key, columns with data type and

preset column families, and column-to-table schema mapping. The catalogue is json.

https://www.hadoopexam.com/

 6

An HBase DataFrame is a Spark DataFrame that can interface with Hive, ORC, Parquet, JSON, etc.

Avro, Phoenix, and PrimitiveType are Java's primitive serdes.

Streaming: Cloudera's OpDB includes streaming data processing frameworks and tools.

DataFlowCloudera (CDF): Cloudera DataFlow is a scalable, real-time streaming data platform that

gathers, curates, and analyses data.

Flow management: CFM is a no-code Apache NiFi data intake and management solution. It provides

enterprise-scale data transport, transformation, and administration. Nifi automates system-to-

system data transfer.

Analytical streaming: Cloudera Streaming Analytics driven by Apache Flink gives real-time streaming

analytics. CSA delivers a low-latency, scalable streaming solution. It enables connections based on

sources and sinks, such as HBase Streaming. Cloudera Streaming Analytics

Streaming: Apache Kafka is the fundamental stream processing engine for Cloudera Stream

Processing (CSP). It manages streams. Cloudera Stream Processing has details.

Spark: Spark Streaming is a micro-batched stream processing framework. HBase and Spark

Streaming are perfect partners because HBase can aid Spark Streaming:

• A quick source of reference or profile data

• A location to store counts or aggregates to fulfil Spark Streaming's once-processing

guarantee.

Operation Database Security

Encrypting data-at-rest: HDFS' Transparent Data Encryption (TDE) capability encrypts data-at-rest.

• Data end-to-end encryption

• cryptographic and administrative functions separated

• Lifecycle management features are mature

Our cloud installations for cloud-native storage include encryption key escrow with AWS KMS or

Azure Key Vault.

Encryption in Transit: OpDB's wire encryption employs TLS. It gives networked applications

authentication, privacy, and data integrity. OpDB's Auto-TLS functionality simplifies TLS encryption

on your cluster. Apache Phoenix, HBase (Web UIs, Thrift Server, REST Server) enable Auto-TLS.

Ranger Key Management: Ranger KMS stores encryption zone keys (EZKs) needed to decode data

encryption keys to view decrypted files. Through RangerKMS, users may segregate key and data

access controls. EZKs are kept in a KMS database. This database may be installed on cluster nodes in

a secure way.

The EZKs are encrypted using a master key that is externalised in HSMs. Key rotation and versioning

are enabled through configuration and policy management interfaces. Access audits in Apache

Ranger monitor access keys.

https://www.hadoopexam.com/

 7

Decryption: Decryption only happens at the client, and during decryption, no zone key leaves the

KMS.

Due to the separation of duties (for example, platform operators cannot get access to encrypted

data at rest), it is possible to control who can access decrypted content and under what

circumstances in a very fine-grained way. Apache Ranger automatically takes care of this separation

by using fine-grained policies to limit operator access to decrypted data. Ranger KMS has the same

management interface that can be used to rotate and roll over keys.

User Authentication: Cloudera’s platform supports the following forms of user authentication:

• Kerberos

• LDAP username/password

• SAML

• OAuth (using Apache Knox)

Authorization:

Attribute-based access control:

Cloudera's OpDBMS includes Apache Ranger for RBAC and ABAC. Cell, column family, table,

namespace, and global authorization are possible. This supports creating roles as global

administrators, namespace admins, table admins, or any mix of these scopes. Apache Ranger

centralises the definition, administration, and management of large data security rules. ABAC-based

policies may incorporate the subject (user), action (create or edit), resource (table or column family),

and environmental attributes to produce a fine-grained authorization policy.

Apache Ranger offers sophisticated features including security zones, Deny policies, and policy

expiry (setting up a policy which is enabled only for limited time). These properties, together with

those outlined above, help establish effective, scalable, and manageable OpDBMS security policies.

Descriptive characteristics may be used to manage OpDBMS access in large-scale applications with a

limited number of access control rules. Descriptions: AD groups Apache Atlas-based tags, geo-

location, and other topic, resource, and environment information.

Apache Ranger rules may be exported/imported into another OpDBMS system with minimum effort.

This technique allows compliance employees and security administrators to specify GDPR-required

security rules finely.

Admin database access: Apache Ranger allows fine-grained database management via rules or

grant-and-revoke procedures. It gives users and groups fine-grained permission mapping. This allows

DBAs to have just the needed rights for certain resources (columns, tables, column families, etc.).

Administrators or operators might be restricted from decrypting TDE-encrypted HDFS data. Specific

key access restrictions ensure that administrative users cannot see or update encrypted data

because they lack key access.

Blocking unlawful use: Several of Cloudera's query engines employ variable binding and query

compilation to avoid SQL injections. Our platform undergoes dynamic penetration testing and static

code scanning for every customer-facing release to identify SQL injection and other vulnerabilities.

https://www.hadoopexam.com/

 8

Apache Ranger's extensive security system can prohibit unauthorised use.

Least Privileges Model: Ranger's OpDB default is deny. A user is denied access to a resource if no

policy expressly grants authorization. Policies must permit explicit privileges. Specific roles map

privileged users and actions. Apache Ranger has delegated administration facilities to enable

specified permission for certain resource groups.

Get Full Version Contents from this link

https://www.hadoopexam.com/
https://www.hadoopexam.com/Cloudera_Certification/CCA159/What_is_cloudera_certifications_CCA131_CCA175_CCA159_CCPDE575_Exam.html
https://www.hadoopexam.com/Cloudera_Certification/CCA159/What_is_cloudera_certifications_CCA131_CCA175_CCA159_CCPDE575_Exam.html

Contents
Chapter-27: DESCRIBE REQUIREMENTS TO DEPLOY CDP PUBLIC CLOUD ON MAJOR CLOUD

INFRASTRUCTURE: AWS .. 1

Overview ... 1

CDP On Public Cloud ... 2

CDP in Public Cloud Examples ... 3

CDP Services in Public Cloud ... 3

Data Services ... 4

Security and Governance .. 4

Accessing CDP on Public Cloud ... 4

CDP On AWS .. 5

AWS resources created for Data Hub .. 8

AWS resources created for Data Engineering ... 9

AWS resources created for DataFlow .. 10

AWS resources created for Data Warehouse .. 11

AWS resources created for Machine Learning .. 12

AWS resources created for Operational Database ... 13

Chapter-27: DESCRIBE REQUIREMENTS TO DEPLOY CDP PUBLIC CLOUD ON MAJOR

CLOUD INFRASTRUCTURE: AWS

Overview

Cloudera Data Platform (CDP) allows users to pick any cloud, analytics, or data. CDP has public and

private clouds. Cloudera Data Platform securely moves applications, data, and users across the data

centre and several public clouds.

- A single data fabric orchestrates data sources across several clouds and on-premises.

- An open data lakehouse offers multi-function analytics on streaming and stored data in

hybrid multi-cloud.

- A scalable data mesh eliminates data silos by spreading responsibility to cross-functional

teams.

CDP delivers enterprise-level security and control with Cloudera SDX. Cloudera SDX combines

enterprise-grade centralised security, governance, and administration with shared metadata and a

data catalogue, avoiding expensive data silos, proprietary format lock-in, and resource contention.

Now users and admins may exchange data.

CDP On Public Cloud

Create safe data lakes, self-service analytics, and machine learning services without data platform

software. Cloudera manages CDP Public Cloud services, but your data will always stay under your

control in your workloads and cloud account. AWS, Azure, and Google Cloud host CDP.

You can:

- Control cloud expenditures by automatically starting workloads when required, scaling them

as demand changes, and stopping them when done.

- Isolate and regulate user, workload, and priority workloads.

- Centralize customer and operational data across multi-cloud and hybrid systems.

CDP in Public Cloud Examples

- Streaming solutions may enhance data sets and select production data for downstream

practitioners. Manage data transport between sources and destinations with real-time data

flow control.

- Leverage object stores as centralised storage to bring together disparate datasets, enhance

and analyse utilising CDP analytical engines, and create a customer 360 use case.

- Collect measurements from process and discrete manufacturing systems to record, model,

and notify on deviations before it's too late.

- Run workloads at the proper time and place to decrease computing and storage expenses

and prevent cloud lock-in.

CDP Services in Public Cloud

CDP Public Cloud offers cloud services for business data use cases. This contains Cloudera Data Hub,

data services (Data Warehouse, Machine Learning, Data Engineering, and DataFlow), the

administrative layer (Management Console), and SDX services (Data Lake, Data Catalog, Replication

Manager, and Workload Manager).

Administrative layer

Management Console is used by CDP administrators to administer, monitor, and coordinate all CDP

services across all environments. You can create, monitor, provision, and delete services for data

centre and public cloud deployments in one location.

Workload Cluster

Data Hub is a service for deploying and maintaining Cloudera Runtime-powered workload clusters.

This contains cloud-optimized templates for typical workload kinds and capabilities for considerable

customisation. Data Hub enables total workload isolation and full elasticity so any task, application,

or department may have its own cluster with a separate software version, configuration, and

infrastructure. These speeds up development. Data Hub clusters are straightforward to deploy and

have an automated lifetime, so you can construct them on demand and return the resources to the

cloud when you're done.

Data Services

- Data Engineering is an all-inclusive data engineering solution built on Apache Spark that

automates ETL procedures using Apache Airflow, enhanced pipeline monitoring, visual

debugging, and extensive management features.

- DataFlow is a cloud-native, Apache NiFi-powered universal data distribution service that

allows developers connect to any data source, analyse it, and distribute it to any destination.

It provides a flow-based low-code development methodology that corresponds with how

developers build data pipelines.

- Data Warehouse helps data analysts create and manage self-service data warehouses. This

service makes it simple to setup a new data warehouse and share a subset with a team or

department. The ephemeral service allows you to swiftly construct and end data

warehouses.

- Machine Learning creates and manages self-service workplaces. This allows data scientists

to construct, test, train, and deploy machine learning models using business and cloud data.

- Operational Database allows self-service database construction. Operational Database uses

Apache HBase and Apache Phoenix. You may utilise the same storage and access layers from

CDH and HDP.

Security and Governance

- Shared Data Experience (SDX) is a package of technologies that allows organisations to bring

all their data into one place for safe and managed sharing. Data Lake, Data Catalog,

Replication Manager, and Workload Manager are SDX services.

- Data Lake offers a protective ring around data saved in cloud object storage or HDFS.

Management Console and Cloudera Runtime absorb Data Lake capability (Ranger, Atlas,

Hive MetaStore).

- Data Catalog organises, secures, and governs business cloud data. Data Catalog is used by

data stewards to browse, search, and tag a data lake's content, develop and maintain

permission rules (by file, table, column, row, etc.), and track a data set's history.

- Replication Manager copies, migrates, snapshots, and restores corporate data cloud data.

This service moves, copies, backups, replicates, and restores data in or across data lakes. For

backup, disaster recovery, migration, or dev/test in another virtual environment.

- Workload Manager optimises business cloud workloads. Administrators use this service to

diagnose, analyse, and optimise workloads to enhance performance and/or cost.

Accessing CDP on Public Cloud

Web interface, CLI client, and SDK are the main methods to utilise CDP Public Cloud.

Web Interface: CDP Public Cloud's web interface is graphical. As an admin user, you may register

environments, manage users, and supply CDP service resources for end users. End users may utilise

the web console to access CDP service web interfaces for data engineering or analytics.

Command Line Interface

You may download and setup the CDP client to use the CDP CLI tool in a terminal window. CDP CLI

lets you do web console activities. It also automates cluster construction.

SDK (Software Development Kit)

CDP SDK for Java integrates CDP services into applications. Connect to CDP services, construct and

manage clusters, and perform tasks from your Java application or other data integration tools.

CDP On AWS

CDP Control Plane Regions: Cloudera-operated service including Management Console, Workload

Manager, Replication Manager, and Data Catalog. These services interface with your Amazon Web

Services (AWS), Microsoft Azure, and Google Cloud accounts to deploy and manage computing

infrastructure for managing cloud data lifecycles. The Control Plane can also enable hybrid cloud

deployments by integrating with on-premises and Private Cloud infrastructure.

Each Control Plane and account operates in an area. If your company needs your CDP account and

its data to stay in a specified area, consider the regions below to setup your CDP account and

Control Plane.

Every CDP account uses the CDP Control Plane. CDP Control Plane and its services were formerly

hosted at us-west-1.

Certain nations may restrict or prohibit sending or storing certain kinds of data beyond their borders.

Cloudera has so added additional Control Plane areas. By picking a region other than us-west-1, you

may prevent sensitive metadata from leaving its area or nation.

During CDP account creation, your administrator will pick the Control Plane area. Your CDP account,

users, groups, and CDP resources like environments, Data Lakes, and Data Hubs are related to their

Control Plane area. Control Plane and CDP accounts cannot be changed after creation.

As additional Control Plane areas are introduced, not every CDP feature or data service will be

accessible, but they will be supported for every region. Refer to the following support matrix to

identify whether CDP data services and significant features are available in your CDP Control Plane's

region:

Though there are few observable variations across Control Plane regions, it's necessary to set up

outbound network access effectively. Control Plane API and UI endpoints vary by area.

The name of a Control Plane's region is used in CRNs (the ID CDP uses to designate a resource, such

as an environment, user, or cluster), API endpoints, and more, however CDP documentation

commonly uses "us-west-1."

Required Permissions on AWS

As a CDP administrator, you may do the following in AWS:

- Create policies and roles in IAM.

- Create and administer VPCs, subnets, security groups, and S3 buckets.

- Perform administrative tasks in various AWS services such as EC2 and CloudFormation.

- AWS Administrator credentials allow creating CDP resources.

The following AWS resources are used by CDP and CDP services.

- AWS resources created for a CDP environment

- When a CDP environment is created, a FreeIPA cluster and a Data Lake cluster are created.

Resource Description

Virtual Private Cloud

(VPC)

If during environment creation you select to have a new VPC and subnets created,

then the new VPC and subnets are created on your AWS account. Alternatively,

you can provide your own existing VPC and subnets. In both cases, all the

resources that CDP provisions for the environment are provisioned into this

specific VPC. For example, the EC2 instances provisioned for Data Hub or Data

Warehouse are provisioned into that VPC.

Identity and Access

Management (IAM)

The cross-account IAM policy that you provided as your credential allows CDP to

obtain an access and secret key from AWS, allowing CDP to create resources for

your environment and for CDP services such as Data Hub, Data Warehouse, and

Machine Learning on your AWS account.

CloudFormation During environment creation, CloudFormation stack is provisioned for FreeIPA to

create required resources. This generates an AWS stack which links and describes

the resources of your FreeIPA server. Multi-AZ deployments do not use a

CloudFormation template for VM creation. Neither autoscaling groups or launch

templates are created. The cluster resources are managed individually using AWS

native components (for example, EC2 instances).

Elastic Compute

Cloud (EC2)

During environment creation, two or three m5.large EC2 instances are provisioned

for the FreeIPA HA server by default. The number of instances depends on the

selected Data Lake type. Furthermore, security groups with the rules specified

during environment creation are provisioned to define inbound and outbound

access to the instances.

In addition, the following resources are created for each Data Lake (one per environment):

Resource Description

CloudFormation A CloudFormation stack is provisioned for your Data Lake to create instances,

disks, and RDS required. This generates an AWS stack which links and describes

the resources of your Data Lake cluster. Multi-AZ deployments do not use a

CloudFormation template for VM creation. Neither autoscaling groups or launch

templates are created. In a multi-AZ setup the cluster resources are managed

individually using AWS native components (for example, EC2 instances).

Elastic Compute

Cloud (EC2)

EC2 instances with attached storage are provisioned for the Data Lake nodes:

• Light duty: Two instances are provisioned: One t3.medium instance

(IDBroker) and one m5.2xlarge instance (Data Lake Master node).

• Medium duty: Ten instances are provisioned: Two t3.medium instances

(IDBroker), three m5.xlarge instances (two Data Lake Master nodes and

one Auxiliary node), and five m5.2xlarge instances (three DataLake

Core nodes and two Gateway nodes).

Furthermore, security groups with the rules specified during environment

creation are provisioned to define inbound and outbound access to the

instances.

Relational Database

Service (RDS)

An RDS instance (db.m5.large) is provisioned for the Data Lake. This RDS

instance is used for Cloudera Manager, Ranger, and Hive MetaStore.

Simple Storage

Service (S3)

The existing S3 that you provide during environment creation for the Data Lake

is used for Data Lake log storage and workload data storage.

DynamoDB (Only

when using Runtime

older than 7.2.2)

S3 storage is eventually consistent, so for example file listing on S3 might miss

entries that were only created very recently. To work around the eventual

consistency issues, CDP uses S3Guard, a hadoop extension that stores file names

in a DynamoDB table. S3Guard can therefore return the expected file listings,

without really having to query the S3 content. One DyamoDB table is provisioned

for S3Guard during Data Lake provisioning.

As of June 21 2021, S3Guard is no longer enabled when using Runtime 7.2.2 or

newer, so any environments deployed after this date with Runtime 7.2.2 or newer

don't require creating a DynamoDB table.

AWS resources created for Data Hub

The following AWS resources are created for the Data Hub service:

Resource Description

CloudFormation A CloudFormation stack is created for each Data Hub cluster to create instances

and disks. This generates an AWS stack which links and describes the resources

of your Data Hub cluster. Multi-AZ deployments do not use a CloudFormation

template for VM creation. Neither autoscaling groups or launch templates are

created. In a multi-AZ setup the cluster resources are managed individually using

AWS native components (for example, EC2 instances).

Elastic Compute

Cloud (EC2)

An EC2 instance is created for each cluster node. The instance type varies

depending on what you selected during Data Hub cluster creation. For each

instance, attached storage is provisioned. The storage size and type varies

depending on what you selected during cluster creation. Furthermore, security

groups with the rules specified during environment creation are provisioned to

define inbound and outbound access to the instances. For a list of supported EC2

instance types.

Relational

Database Service

(RDS)

Data Hub connects to the Hive MetaStore database on the RDS instance

provisioned for the Data Lake.

Simple Storage

Service (S3)

The existing S3 bucket that you provided for the Data Lake to use for workload

data storage can be accessed from Data Hub clusters via the S3A connector.

Auto Scaling Data Hub uses the Auto Scaling service for upscaling clusters, except in a multi-

AZ deployment.

Key Management

Service (KMS)

Data Hub uses KMS for encrypting your disks if during Data Hub cluster creation,

you select to use disk encryption.

AWS resources created for Data Engineering

The following AWS resources are created for the Cloudera Data Engineering (CDE) service:

Resource Description

CloudFormation The initial deployment of services such as the EKS cluster is orchestrated through

CloudFormation. This generates an AWS stack which links and describes the

resources of your CDE cluster.

Elastic Compute

Cloud (EC2)

CDE uses EC2 instances as cluster nodes. For a list of supported EC2 instance

types.

Auto Scaling CDE uses AWS AutoScaler to add or remove EC2 instances to the kubernetes

cluster. Whenever the kubernetes cluster is running low on resources, new EC2

instances are provisioned and jointed into the EKS cluster. Whenever the

Resource Description

AutoScaler detects an over-provisioning of resources, it removes and suspends

EC2 instances.

Elastic Kubernetes

Service (EKS)

EKS is the AWS implementation of the kubernetes stack. All PODs are running

within an EKS cluster (one per environment).

ELB Classic Load

Balancer

CDE uses Classic Load Balancers for redirecting traffic to EC2 instances.

Key Management

Service (KMS)

CDE uses KMS for encrypting your disks if you select to use disk encryption.

Elastic Block Store

(EBS)

CDE uses EBS for persistent instance storage.

Elastic File System

(EFS)

CDE uses EFS for persistent service and virtual cluster storage.

Relational

Database Service

(RDS)

CDE uses RDS for provisioning relational databases.

AWS resources created for DataFlow

The following AWS resources are created for the DataFlow (DF) service:

Resource Description

CloudFormation The initial deployment of services such as the EKS cluster is orchestrated through

CloudFormation. This generates an AWS stack which links and describes the

resources of your DataFlow cluster.

Elastic Compute

Cloud (EC2)

DataFlow uses EC2 instances as cluster nodes. For a list of supported EC2

instance types.

Auto Scaling DataFlow uses AWS AutoScaler to add or remove EC2 instances to the

kubernetes cluster. Whenever the kubernetes cluster is running low on

resources, new EC2 instances are provisioned and jointed into the EKS cluster.

Whenever the AutoScaler detects an over-provisioning of resources, it removes

and suspends EC2 instances.

Elastic Kubernetes

Service (EKS)

EKS is the AWS implementation of the kubernetes stack. All PODs are running

within an EKS cluster (one per environment).

Resource Description

ELB Classic Load

Balancer

DataFlow uses Classic Load Balancers for redirecting traffic to EC2 instances.

Elastic Block Store

(EBS)

DataFlow uses EBS for persistent instance storage.

Relational

Database Service

(RDS)

DataFlow uses RDS for provisioning relational databases.

AWS resources created for Data Warehouse

The following AWS resources are created for the Cloudera Data Warehouse (CDW) service:

Resource Description

Identity and Access

Management (IAM)

During CDW cluster provisioning, the DW service creates an IAM role that defines

access to S3 and other provisioned resources. Such role is then attached to the

EC2 instance profile to grant PODs within the kubernetes environment access to

these resources.

Certificate Manager CDW creates, stores, and maintains a certificate in the AWS certificate manager.

This certificate is used to allow HTTPS connections to the external facing

endpoints (i.e. for JDBC or the DAS UI). The certificate is signed by a trusted

certificate authority, therefore external consumers and browser can securely

connect to DW services without having to deal with untrusted CA or self-signed

certificates.

CloudFormation The initial deployment of services such as the EKS cluster, the CDW-specific RDS

database, and S3 buckets is orchestrated through CloudFormation. This

generates an AWS stack which links and describes the resources of your DW

cluster.

Elastic Compute

Cloud (EC2)

CDW uses EC2 instances as cluster nodes. Two different EC2 instance types

(through two different auto scaler groups) are used to support shared services

and compute requirements within the cluster: m5.2xlarge for always on

components, and r5d.4xlarge for compute nodes (Hive and Impala executors).

Furthermore, security groups with the rules specified during environment

creation are provisioned to define inbound and outbound access to the

instances. For a list of supported EC2 instance types.

Simple Storage

Service (S3)

CDW creates its own S3 buckets (separate from the environment’s S3 bucket(s))
for storing data and logs.

Resource Description

Auto Scaling CDW uses AWS AutoScaler to add or remove EC2 instances to the kubernetes

cluster. Whenever the kubernetes cluster is running low on resources, new EC2

instances are provisioned and jointed into the EKS cluster. Whenever the

AutoScaler detects an over-provisioning of resources, it removes and suspends

EC2 instances.

Elastic File System

(EFS)

EFS is used as shared filesystem across PODs to persist data (i.e. result cache).

Elastic Load

Balancing (ELB)

All inbound traffic is routed through ELB towards the ingress controller of the

kubernetes cluster. The ELB is provisioned as a result of the kubernetes ingress

controller, which is the single point of entry for services, running in the

kubernetes cluster.

Managed

Kubernetes Service

(EKS)

EKS is the AWS implementation of the kubernetes stack. All DW-deployed PODs

are running within an EKS cluster (one per environment).

Key Management

Service (KMS)

CDW encrypts data at rest in S3. This requires an encryption key to be generated

and stored in KMS. The key is completely under the control of AWS and cannot

be exported or otherwise extracted. The S3 buckets are directly referencing the

key within KMS, using it to encrypt the stored data.

Relational Database

Service (RDS)

During cluster provisioning, DW provisions an RDS instance to be used as

backend database system for metadata, managed and stored by the HMS

instances, represented by “DB Catalogs”. Each DB Catalog is implemented as
separate database within this single RDS instance.

Security Token

Service (STS)

STS is used to generate access tokens (based on roles) to access the resources

within the environment's VPC.

AWS resources created for Machine Learning

The following AWS resources are created for the Cloudera Machine Learning (CML)

service:

Resource Description

Identity and

Access

Management

(IAM)

CML creates additional IAM roles and policies for each cluster. Such roles are then

attached to the EC2 instance profile.

Resource Description

Elastic Block Store

(EBS)

CML uses EBS as block storage.

Elastic Load

Balancer (ELB)

CML uses Classic Load Balancers for redirecting traffic to EC2 instances.

Key Management

Service (KMS)

CML uses KMS for encrypting your disks if you select to use disk encryption.

Elastic File System

(EFS)

EFS is used for project file storage.

Elastic Compute

Cloud (EC2)

CML uses EC2 instances as cluster nodes. Three different EC2 instance types (through

three different auto scaler groups) are used to support CML infra and compute

requirements within the kubernetes cluster. Furthermore, security groups with the

rules specified during environment creation are provisioned to define inbound and

outbound access to the instances. For a list of supported EC2 instance types.

Auto Scaling CML uses AWS AutoScaler to add or remove EC2 instances to the kubernetes cluster.

Whenever the kubernetes cluster is running low on resources, new EC2 instances are

provisioned and jointed into the cluster. Whenever the AutoScaler detects an over-

provisioning of resources, it removes and suspends EC2 instances.

Simple Storage

Service (S3)

CML uses S3 as the primary store for data and logs.

Security Token

Service (STS)

STS is used to generate access tokens (based on roles) to access the resources within

the environment's VPC.

Managed

Kubernetes

Service (EKS)

EKS is the AWS implementation of the kubernetes stack. All PODs are running within

an EKS cluster (one per environment).

AWS resources created for Operational Database

The following AWS resources are created for the Cloudera Operational Database (COD)

service:

Resource Description

CloudFormation A CloudFormation stack is created for each COD database to create instances and

disks. This generates an AWS stack which links and describes the resources of your

COD database.

Resource Description

Elastic Compute

Cloud (EC2)

An EC2 instance is created for each node. The instance type, storage size, and storage

type is determined automatically by COD. Furthermore, security groups with the rules

specified during environment creation are provisioned to define inbound and

outbound access to the instances.

Simple Storage

Service (S3)

The existing S3 bucket that you provided for the Data Lake to use for workload data

storage can be accessed from COD database via the S3A connector.

AWS Resources and Services used for CDP

AWS resources used by CDP Follow these steps to verify CDP has access to your AWS account's

resources and that your account has all the CDP-required resources:

AWS Region

Choose an AWS region before registering an environment. CDP deploys all AWS resources into a

single VPC in a given region for each AWS environment registered in CDP.

You should install clusters in the same area as your S3 input and output buckets. Consider where

your data is while choosing a region. CDP needs the S3 storage location to be in the same region as

the environment. Numerous areas need multiple settings, one per region.

VPC and subnets

You must pick a VPC and two or more subnets when registering an AWS environment in CDP.

Two choices:

- Provision CDP resources using your VPC and subnets.

- Create a VPC and subnets using CDP. This new VPC and subnets will house all CDP resources.

New VPC and Subnets:

If you choose to allow CDP to create a new VPC, six subnets will be created automatically. One

subnet is created for each availability zone assuming three AZs per region; If a region has two AZs

instead of three, then still three subnets are created, two in the same AZ.

You will need to specify a valid CIDR in IPv4 range that will be used to define the range of private IPs

for EC2 instances provisioned into these subnets. Default is 10.10.0.0/16. Consider changing the IP

range to correspond to corporate policies for standardized IP address ranges. The CIDR must match

the <network mask>/16 pattern.

By default, CDP creates 6 subnets (3 private and 3 public) and divides the address space as follows:

- 3 x /19 private subnets for FreeIPA, Data Lake, Data Hub, Data Warehouse, Machine

Learning

- 3 x /24 public subnets

You can disable creating private subnets, in which case only 3 public subnets will be created.

By default, when creating a new network, CDP uses public endpoints. But during environment

registration you can optionally select the “Create Private Endpoints” option to use private endpoints
instead of public endpoints.

Security

Security groups control incoming and outgoing CDP traffic. To grant your organization's users access

to CDP resources, employ security group settings. Security groups control incoming and outgoing

CDP traffic. To grant your organization's users access to CDP resources, employ security group

settings.

Two choices:

- Utilize security groups (recommended for production)

- Create CDP security groups

If you want CDP to construct security groups for you, offer a CIDR range for your organization's

incoming EC2 traffic. CDP provides numerous security groups for Data Lake, FreeIPA, DataFlow, Data

Hub, Data Warehouse, and Machine Learning clusters.

SSH keys

You must supply a matching SSH public and private key when registering an environment. 2048-bit

SSH keys are minimal. When registering an environment, you will be asked to provide an SSH public

key for which you have a matching private key. The minimum SSH key size is 2048 bits. The SSH

public key will be used for root-level access to Data Lake and Data Hub instances. Only those users

who have the corresponding private key would be able to login as an admin user.

EC2 Instances

CDP creates Data Lake, FreeIPA, and computing clusters using EC2 instances. CDP creates Data Lake,

FreeIPA, and computing clusters using EC2 instances. Verify the quantity and kind of EC2 instances in

your AWS account to establish CDP environments and clusters. CDP supports Amazon EC2 reserved

instances; if you buy them, CDP automatically utilises them per AWS rules. Using IMDSv1 or IMDSv2,

you may retrieve EC2 instance information on AWS. CDP supports IMDSv1 but not IMDSv2, thus

don't activate IMDSv2 on CDP EC2 instances.

CDP uses default images for all provisioned VMs, however you may use custom images for Data

Lake, FreeIPA, and Data Hub. You may need a custom image for compliance or security (a

"hardened" image) or to pre-install monitoring tools or applications.

Create a cross-account access IAM role

In your AWS account and add CDP as a trusted principal by giving an AWS account and external ID.

Create a cross-account access IAM role in your AWS account and add CDP as a trusted principal by

giving an AWS account and external ID.

The cross-account access IAM role policy must have the below-linked permissions. AWS account ID

and external ID must be referenced in the IAM role.

S3 bucket, IAM roles, backups, and data storage

CDP needs an S3 bucket for workload data and logs. You must also build IAM roles and rules that

provide S3 bucket access.

The S3 bucket is used for:

- Storage location base - Workload data storage and Ranger audits

- Log’s location base - Service logs, FreeIPA logs

- Backup location base - FreeIPA and Data Lake backups

The S3 bucket must be in the same region as the environment.

DynamoDB

You must pick a DynamoDB table for S3Guard when enrolling an AWS environment in CDP.

Keys Managed by customers

By default, Data Lake and FreeIPA's Amazon EBS volumes and RDS are encrypted using Amazon's

KMS, but you may specify Customer Managed Keys (CMK). Data Hubs inherit the environment's

Amazon lets you encrypt EBS volumes and RDS instances using Amazon's KMS or a customer-

managed KMS. By default, Data Lake and FreeIPA are encrypted using Amazon's KMS default key in

the environment's region, but you may supply a customer-managed KMS key instead. Block and root

devices are encrypted. When encryption is set for a cluster, it's immediately applied to any new VM

instances added due to scaling or repair.

AWS restrictions

AWS restricts your resources when you establish an account. Region-specific constraints apply.

Accessing to Workload UIs in AWS

If you have limited DNS or networking, ensure sure *.cloudera.site can be resolved from your

network so employees can use workload UIs.

Subdomains under cloudera.site host CDP UI endpoints (including Data Lake) (Cloudera Manager,

Ranger, Knox, Hue and so on). When a Data Lake, Data Hub, or other workload (such as Virtual

Warehouse in CDW) is formed, CDP automatically supplies these endpoints and sets up routing so

you can access them from your network.

<endpoint-name>.env-truncated-name>.customer-workload-subdomain>.regional-

subdomain>.cloudera.site

CDP CIDR

CDP CIDR includes the following IP ranges, when creating your own security groups for CDP, you

must open required ports to all of these IP ranges.

CDP Public Cloud reference network architecture for AWS

Customers may build up cloud Data Lakes and compute workloads on AWS, Azure, and Google

Cloud. It bridges a cloud account to the environment where compute workload clusters (Data Hubs)

and data services (such as Cloudera Data Engineering (CDE), Cloudera Data Warehouse (CDW),

Cloudera Machine Learning (CML), Cloudera Operational Database (COD), Cloudera DataFlow (CDF))

are launched. For Data Lakes, computing workload clusters, and data services to perform properly,

numerous cloud architecture aspects must be configured: access rights, networking configuration,

cloud storage, etc. This may be done in two ways:

1. CDP may build up these consumer elements: This methodology helps easily build up a CDP

environment. Many business clients want specialised cloud setups for Infosec or compliance.

Setting up networking and cloud storage required clearance, but they wouldn't actively

block a third-party provider like Cloudera from doing so.

2. Customer-created components may be used in CDP: In this concept, cloud creation flows

Data Lakes uses pre-created cloud settings to deploy applications. This approach meets

business needs. However, the arrangement may not meet CDP criteria. As a consequence,

clients may have trouble deploying CDP workloads, and getting to a functional environment

may take longer and entail numerous tiresome contacts between Cloudera and customer

cloud teams.

CDP Public Cloud lets businesses handle data in a safe, controlled Data Lake utilising Data Hub or

data services. Typical workload lifecycle:

- A CDP admin sets up their cloud environment. This creates a cloud Data Lake cluster,

FreeIPA cluster, and identity provider for this environment. CDP admin may need to engage

with a cloud administrator to generate cloud provider resources (including networking

resources).

- Then, connected computing workload clusters may be launched. Each workload cluster has a

distinct function, such data intake, analytics, or machine learning.

- Data engineers, analysts, and scientists access these computational clusters. This is why CDP

is on the public cloud.

- These computational workload clusters might be long-running or transitory.

Two sorts of CDP consumers utilise it for distinct reasons:

- CDP administrators: deploy and maintain the cloud environment, Data Lake, Data Hubs,

FreeIPA, and CDP data services. They manage the infrastructure using a Cloudera AWS

Management Console.

- Data consumers: utilise Data Hubs and data services to process data. They connect directly

with cloud-based computational workloads (Data Hubs and data services). They might access

them via their business networks (through VPN) or other cloud networks their company

controls.

https://www.hadoopexam.com/Cloudera_Certification/CCA159/What_is_cloudera_certifications_CCA131_CCA175_CCA159_CCPDE575_Exam.html

	Chapter-1: Cloudera CDP Platform
	Chapter-2: CDP Private Cloud
	Chapter-3: CDP Private Cloud Data Services
	Chapter-4: Cloudera Manager
	Chapter-5: Apache Atlas
	Chapter-6: Apache Ranger
	Chapter-1: Apache HDFS
	Overview
	HDFS cluster components and their respective roles
	Advantages of using HDFS
	NameNodes
	DataNodes
	JournalNodes
	The Architecture of HDFS
	Read Operations on the HDFS
	HDFS Operation for Writing
	HDFS FAQ

	Chapter-2 Apache Ozone
	Overview
	Ozone architecture
	Advanced Concepts

	Chapter-3 Apache Hive
	Overview
	Hive Features
	Hive Architecture
	Benefits of using Apache Hive
	Problems with Hive
	Facts about Apache Hive
	FAQ for Apache Hive

	Chapter-4: Apache Hue
	Overview
	Hue Design and Architecture
	Administrator
	Major Functionalities of Hue in CDP
	Hive vs Hue

	Chapter-5: Cloudera CDP and YARN
	Overview
	CDP Compute
	YARN architecture and workflow
	YARN Features
	YARN and Cluster Basics (Master and Worker Nodes)
	YARN Configuration File
	YARN Requires a Global View
	YARN Containers
	YARN Application Processing on Cluster
	MapReduce Fundamental Concepts
	YARN Integrated across the CDP platform
	YARN Scheduler
	YARN Capacity Scheduler Overview
	YARN Web User Interface
	Resource Scheduling and Management

	Chpater-6: Apache Spark
	Overview
	Fundamentals of Apache Spark
	Spark Architecture
	Spark Applications
	DataFrames
	Partitions
	Transformations

	Chapter-7: Apache Impala
	Overview
	Benefits of using Impala
	How Impala Works with Hadoop
	Impala and Query Execution
	Impala and Hive
	A Brief Introduction to Impala Metadata and the Metastore
	How Impala Uses HDFS
	How Impala Uses HBase
	Constituent parts of the Impala

	Chapter-8: Apache OOZie
	Overview
	Oozie Workfows
	Oozie Architecture
	Use-Cases of Apache Oozie
	Oozie Editors
	Hue Editor for Oozie
	Oozie Eclipse Plugin (OEP)
	Oozie Workflow

	Chpater-9: Apache Kafka
	Overview
	Pub Sub System
	Kafka Architecture
	Topics
	Brokers
	Records
	Partitions
	KAFKA REAL TIME APPLICATIONS

	Chapter-10: Apache NiFi
	Overview
	Benefits of NiFi DataFlow
	NiFi Architecture
	NiFi as Cluster
	NiFi Features
	Ease of Operation
	Protection
	Extensible Architecture
	Flexible Scaling Model

	The fundamental ideas of NiFi

	Chapter-13: Apache Phoenix
	Overview
	Apache Phoenix History
	Apache Phoenix & SQL Support
	Apache Phoenix JDBC Connection
	About Apache Phoenix
	Relational Layer
	Apache Phoenix Integration with Hadoop
	Apache HBase
	Phoenix and SQL
	Phoenix not supported SQL Construct
	Phoenix Knobs and Dials
	Cloudera Operational Database
	Apache Phoenix Use Cases

	Chapter-1: Apache HDFS
	Overview
	HDFS cluster components and their respective roles
	Advantages of using HDFS
	NameNodes
	DataNodes
	JournalNodes
	The Architecture of HDFS
	Read Operations on the HDFS
	HDFS Operation for Writing
	HDFS FAQ

	Chapter-2 Apache Ozone
	Overview
	Ozone architecture
	Advanced Concepts

	Chapter-3 Apache Hive
	Overview
	Hive Features
	Hive Architecture
	Benefits of using Apache Hive
	Problems with Hive
	Facts about Apache Hive
	FAQ for Apache Hive

	Chapter-4: Apache Hue
	Overview
	Hue Design and Architecture
	Administrator
	Major Functionalities of Hue in CDP
	Hive vs Hue

	Chapter-5: Cloudera CDP and YARN
	Overview
	CDP Compute
	YARN architecture and workflow
	YARN Features
	YARN and Cluster Basics (Master and Worker Nodes)
	YARN Configuration File
	YARN Requires a Global View
	YARN Containers
	YARN Application Processing on Cluster
	MapReduce Fundamental Concepts
	YARN Integrated across the CDP platform
	YARN Scheduler
	YARN Capacity Scheduler Overview
	YARN Web User Interface
	Resource Scheduling and Management

	Chpater-6: Apache Spark
	Overview
	Fundamentals of Apache Spark
	Spark Architecture
	Spark Applications
	DataFrames
	Partitions
	Transformations

	Chapter-7: Apache Impala
	Overview
	Benefits of using Impala
	How Impala Works with Hadoop
	Impala and Query Execution
	Impala and Hive
	A Brief Introduction to Impala Metadata and the Metastore
	How Impala Uses HDFS
	How Impala Uses HBase
	Constituent parts of the Impala

	Chapter-8: Apache OOZie
	Overview
	Oozie Workfows
	Oozie Architecture
	Use-Cases of Apache Oozie
	Oozie Editors
	Hue Editor for Oozie
	Oozie Eclipse Plugin (OEP)
	Oozie Workflow

	Chpater-9: Apache Kafka
	Overview
	Pub Sub System
	Kafka Architecture
	Topics
	Brokers
	Records
	Partitions
	KAFKA REAL TIME APPLICATIONS

	Chapter-10: Apache NiFi
	Overview
	Benefits of NiFi DataFlow
	NiFi Architecture
	NiFi as Cluster
	NiFi Features
	Ease of Operation
	Protection
	Extensible Architecture
	Flexible Scaling Model

	The fundamental ideas of NiFi

	Chapter-13: Apache Phoenix
	Overview
	Apache Phoenix History
	Apache Phoenix & SQL Support
	Apache Phoenix JDBC Connection
	About Apache Phoenix
	Relational Layer
	Apache Phoenix Integration with Hadoop
	Apache HBase
	Phoenix and SQL
	Phoenix not supported SQL Construct
	Phoenix Knobs and Dials
	Cloudera Operational Database
	Apache Phoenix Use Cases

	Chapter-12: Apache Kudu for Cloudera CDP-0011 Certification
	Overview
	Comparison with other storage engines
	Kudu’s Design and its benefits
	HDFS vs Kudu
	Kudu Example Use Cases
	Kudu tables, schemas
	Kudu and Write Operations
	Kudu and Read Operations
	Kudu and API
	Kudu and Consistency Model
	Kudu and Timestamps

	Chapter-32: Describe the use and major functions of Workload XM
	Overview
	Recent features added in Workload XM are
	Introduction to Workload XM
	Telemetry Publisher
	Enabling Workload XM
	How metrics are collected?
	From Telemetry Publisher to Workload XM
	Data Types collected by Telemetry Publisher Service
	Removing Sensitive information from Metrics
	Workload XM Web Interface

