
0

ARGOCD INTERVIEW Q&A
By QuickTechie.com | Total 250+ Q&A

Question: What is Argo CD, and what principles does it operate on?

Answer: Argo CD is a continuous delivery tool designed specifically for Kubernetes. It operates on the

principles of GitOps.

Question: Who developed and opensourced Argo CD, and where is it currently maintained?

Answer: Argo CD was developed and opensourced by Intuit and is currently a part of the Cloud

Native Computing Foundation (CNCF).

Question: How does Argo CD help in managing Kubernetes environments?

Answer: Argo CD reads environment configurations from a git repository and applies them to

Kubernetes namespaces. This ensures that app definitions, environment, and configurations are

declarative, versioncontrolled, and represent the desired state of the Kubernetes environment.

Question: Why should app deployment and lifecycle management be automated, audible, and easy

to understand?

Answer: Automating app deployment and lifecycle management ensures consistency, reduces

human errors, and accelerates delivery. Making it audible provides a traceable history of changes,

aiding in accountability and audits. Ensuring it's easy to understand facilitates better collaboration

and troubleshooting among teams.

Question: How does Argo CD utilize a Git repository?

Answer: Argo CD uses a Git repository to express the desired state of the Kubernetes environment.

Each application within a project is described in its own folder within the repository, and there is a

branch for each destination (like cluster and namespace) where the applications are to be deployed.

Question: What should app definitions, environments, and configurations be like in the context of

Argo CD?

Answer: App definitions, environments, and configurations should be declarative and maintained

under version control.

Question: How does the basic setup of Argo CD work concerning repositories and projects?

Answer: In the basic setup, one repository represents one project. Within this repository, each

application has its own folder describing it. The repository also contains a distinct branch for each

destination, such as a cluster or namespace, where the applications are intended to be deployed.

Question: What is the significance of the desired state in Argo CD?

https://www.quicktechie.com/

Answer: The desired state, expressed in a Git repository, represents the intended configuration and

setup of the Kubernetes environment. Argo CD works to ensure the live state in Kubernetes matches

this desired state, allowing for consistency and easier management.

Question: What role do branches play in the Git repository setup of Argo CD?

Answer: In Argo CD's setup, each branch in the Git repository corresponds to a specific destination,

like a cluster or namespace. This allows for clear demarcation and management of where specific

applications are deployed.

Question: What are the core components of Argo CD?

Answer: Argo CD's core components involve reading environment configurations from a Git

repository and applying them to Kubernetes namespaces. It emphasizes that app definitions,

environment, and configurations should be declarative, versioncontrolled, and that app deployment

and lifecycle management should be automated, audible, and straightforward.

Question: What are the three main components of Argo CD?

Answer: The three main components of Argo CD are the API server, Repository Server, and

Application Controller.

Question: What is the primary function of the API Server in Argo CD?

Answer: The API Server controls the whole ArgoCD instance, including its operations, authentication,

and access to secrets which are stored as Kubernetes Secrets.

Question: What does the Repository Server (argocd-repo-server) in ArgoCD do?

Answer: The Repository Server stores and synchronizes data from configured Git-repositories and

generates Kubernetes manifests.

Question: Can you explain the role of the Application Controller in Argo CD?

Answer: The Application Controller monitors applications in a Kubernetes cluster to ensure they

match their description in a repository. It also controls the PreSync, Sync, and PostSync hooks.

Question: Does ArgoCD replace your entire release pipeline?

Answer: No, ArgoCD does not replace the entire release pipeline. It only manages a part of it,

particularly the deployment of configuration files to a cluster after they become available post-

merge.

https://www.quicktechie.com/

Question: At which point in the deployment process does ArgoCD typically intervene?

Answer: ArgoCD steps in after configuration files become available post-merge, to apply those

configurations to the cluster.

Question: Why might one choose to use ArgoCD in their deployment process?

Answer: The main reason to use ArgoCD is to ensure that applications in a Kubernetes cluster are

consistently in sync with their descriptions in the associated Git repository, promoting a GitOps

approach and ensuring predictable and traceable deployments.

Question: How does ArgoCD ensure that the applications in the Kubernetes cluster match their

description in the repository?

Answer: ArgoCD's Application Controller constantly monitors the applications in the cluster and

compares them with their descriptions in the Git repository, making adjustments as needed to align

the two.

Question: What are PreSync, Sync, and PostSync hooks in the context of ArgoCD's Application

Controller?

Answer: These hooks in ArgoCD represent actions or processes that are run before synchronization

(PreSync), during synchronization (Sync), and after synchronization (PostSync) to ensure successful

and consistent deployments.

Question: Is it necessary to have a pre-existing pipeline for ArgoCD to function efficiently?

Answer: Yes, for efficient use of ArgoCD, there should be a pipeline set up that allows pull requests

to be merged, making configuration files available for application to a cluster. ArgoCD then steps in to

handle the deployment of these configurations.

Question: What is a push deployment strategy?

Answer: A push deployment strategy involves a pipeline that builds images, prepares configurations,

and then directly deploys Infrastructure as Code (IaaC) files into the Kubernetes cluster. This strategy

centralizes all tasks into one pipeline.

Question: What are the advantages of a push deployment strategy?

Answer: The main advantage of a push deployment strategy is its simplicity, as everything is placed

in one pipeline. This makes it easier to understand and manage.

Question: Why might a push deployment strategy pose challenges when using tools like Jenkins?

https://www.quicktechie.com/

Answer: With push deployment, tools like Jenkins need both the necessary deployment tools (e.g.,

kubectl) installed and access to the cluster, usually via the kubeconfig file. This poses a security risk,

especially if the cluster is hosted on cloud providers like AKS or EKS.

Question: What is the main security concern when using a push deployment strategy with a cloud

provider?

Answer: The security concern is that the deployment machine (e.g., Jenkins) requires access to both

the Kubernetes cluster and potentially the cloud provider's resources, increasing the potential points

of vulnerability.

Question: What challenges arise regarding transparency with push deployments?

Answer: After applying changes to the cluster using push deployments, there's no inherent

mechanism to track what happens next. The best approach usually involves continuously polling the

cluster to check resource statuses, which isn't ideal.

Question: How does the pull deployment model differ from the push deployment model?

Answer: In the pull deployment model, a pipeline prepares resources for deployment but doesn't

deploy them. Instead, an in-cluster service (like ArgoCD) checks for differences between the current

and desired cluster states. When disparities are found, the service pulls in and applies the changes.

Question: What is the primary role of services like ArgoCD in the pull deployment model?

Answer: Services like ArgoCD continuously monitor the desired state of resources and compare it

with the current state of the cluster. When differences are detected, ArgoCD pulls and applies the

necessary changes to bring the cluster to the desired state.

Question: Why is the pull deployment model considered more suitable for applying changes to

Kubernetes clusters?

Answer: The pull deployment model is more secure and transparent. Changes are pulled from within

the cluster, minimizing external access requirements. Moreover, in-cluster services offer better

visibility and control over the deployment process.

Question: How does the pull deployment model enhance transparency and control over

deployments?

Answer: Since changes are pulled from within the cluster, there's an inherent tracking mechanism.

Services like ArgoCD provide real-time visibility into the state of deployments and any disparities

between the current and desired states.

https://www.quicktechie.com/

Question: In summary, what's the main difference in how changes are applied between push and

pull deployment models?

Answer: In push deployments, changes are pushed directly into the cluster from an external pipeline.

In pull deployments, changes are prepared externally but pulled and applied by an in-cluster service

that ensures the cluster aligns with the desired state.

Question: What is the primary purpose of using ArgoCD with a separate Git repository for

infrastructure as code?

Answer: ArgoCD monitors the Git repo for any changes, particularly in the master branch. When the

repo receives configuration file changes, ArgoCD updates automatically, ensuring that your cluster is

always in sync with your infrastructure code.

Question: What types of files can ArgoCD identify?

Answer: ArgoCD can identify Kubernetes Yaml files and any files that generate Kubernetes Yaml files,

such as Helm charts and Kustomize files.

Question: How does using ArgoCD facilitate the division of responsibilities between development

and operations teams?

Answer: The development team is responsible for the pipeline that integrates changes to the master

branch, while the operations team handles the continuous delivery part using ArgoCD.

Question: What happens if a direct change is made to the cluster without updating the Git repo

when using ArgoCD?

Answer: ArgoCD detects desynchronizations between the Git repo and the cluster. If a direct change

is made to the cluster, it counts as a desynchronization. ArgoCD then updates itself from Git, undoing

any changes made directly to the cluster to maintain the GitOps principle.

Question: How does ArgoCD support the GitOps principle?

Answer: ArgoCD enforces a single source of truth, which is the Git repo. This means that whatever is

in the repo reflects what's running in the cluster. Any deviations in the cluster from the repo are

synchronized to maintain this principle.

Question: Are there any configurations where ArgoCD can be prevented from syncing changes?

Answer: Yes, you can configure ArgoCD to prevent it from syncing with the Git repo, though this

would break the GitOps principle of having a single source of truth.

https://www.quicktechie.com/

Question: What benefits come with ArgoCD's tight integration with version control like Git?

Answer: With ArgoCD's integration with Git, you get benefits such as git history, git diffs, the ability

to revert and reset changes, tag release commits, and utilize all functionalities that git provides.

Question: How does ArgoCD improve cluster security without using RBAC or creating cluster roles?

Answer: Since changes to the cluster can only be made via Git, this minimizes direct interventions

and potential vulnerabilities. ArgoCD integrates directly into your cluster, using existing k8 resources

to monitor changes, ensuring full visibility and no missed changes.

Question: How does ArgoCD's mechanism differ from service accounts like Jenkins in terms of cluster

roles?

Answer: Unlike service accounts such as Jenkins, which may require creating cluster roles, ArgoCD

integrates directly into your cluster and leverages existing k8 resources, eliminating the need for

additional cluster roles or RBAC configurations.

Question: What happens when ArgoCD detects a difference between the cluster state and the Git

repository?

Answer: ArgoCD looks for desynchronizations. When a difference is detected, ArgoCD updates itself

from the Git repo, ensuring the cluster state matches the repo's content.

Question: How does ArgoCD handle deployments across the same cluster hosted in multiple

regions?

Answer: ArgoCD allows you to configure multiple destination clusters. This means that with a single

push to your Git repository, configuration changes can be applied to all those clusters simultaneously.

Question: In which scenarios might it be useful to apply configurations to multiple clusters but not

simultaneously?

Answer: One scenario is during a release process where you have multiple clusters serving as

different environments. You might first apply changes to a dev environment for testing, and upon

successful testing, the same configuration is then applied to a prod environment.

Question: How does ArgoCD support deploying configurations to different clusters without using

separate branches for each cluster?

Answer: ArgoCD supports this by utilizing Kustomize overlays. This way, you can apply the same

configuration to different clusters at different times without the need for separate branches.

https://www.quicktechie.com/

Question: What is Kustomize, and how does it integrate with kubectl?

Answer: Kustomize is a CLI tool integrated with kubectl. It helps create overlays from source control

for various scenarios. These overlays allow for different configurations derived from a base

configuration.

Question: Why might Kustomize be beneficial when dealing with clusters that are similar but serve

different purposes?

Answer: Kustomize is great for handling different clusters with similar configurations because it

allows you to create overlays tailored for specific purposes. For instance, you could have one

Kustomization for a dev environment and another for prod, ensuring configuration changes are

applied as needed.

Question: How does ArgoCD leverage Kustomize for handling deployments to multiple clusters?

Answer: ArgoCD leverages Kustomize by allowing users to create overlays for different situations,

such as different environments like dev or prod. With these overlays, users can apply configurations

to specific clusters based on the purpose they serve, ensuring precise control over deployments.

Question: Can you explain the concept of "Kustomization" in the context of deploying to different

environments?

Answer: Kustomization refers to the process of customizing configurations for specific environments

or purposes using Kustomize. For instance, you might have separate Kustomizations for dev and prod

environments, allowing you to manage and apply configurations tailored to each environment's

requirements.

Question: How can ArgoCD ensure that configurations are applied only when they are needed?

Answer: By using Kustomize overlays in conjunction with ArgoCD, users can define specific

configurations for different scenarios. This ensures that changes are applied only to the appropriate

clusters or environments and only when they are intended to be.

Question: In a GitOps workflow with ArgoCD, how can configuration changes be propagated to

multiple clusters?

Answer: In a GitOps workflow with ArgoCD, once changes are pushed to the Git repository, ArgoCD

can be configured to recognize and apply these changes to multiple destination clusters. This ensures

synchronization across clusters based on the desired state defined in the repository.

Question: What advantages does using Kustomize overlays with ArgoCD offer over traditional

branching strategies for different environments?

https://www.quicktechie.com/

Answer: Using Kustomize overlays with ArgoCD provides a more streamlined approach to handling

different environments. Instead of managing separate branches for each environment, overlays allow

for variations of the base configuration tailored for specific purposes. This reduces the complexity of

branching and merging while maintaining consistency in the base configuration.

Question: What is GitOps?

Answer: GitOps is a paradigm that emphasizes using Git as the source of truth for declarative

infrastructure and application deployment, particularly within Kubernetes clusters.

Question: How does GitOps relate to Kubernetes?

Answer: GitOps makes a lot of sense in a Kubernetes cluster because of Kubernetes' architecture and

its response to state changes. GitOps leverages this responsiveness to manage and maintain the

cluster's state using Git.

Question: What are the specific components in a Kubernetes cluster that react to state changes?

Answer: Specific components such as the application programming interface (API) server and

controller manager are responsible for making the Kubernetes cluster react to state changes.

Question: Can you differentiate between imperative APIs and declarative ones in the context of

Kubernetes?

Answer: Imperative APIs dictate "how" to perform operations in a step-by-step manner, while

declarative APIs specify "what" the desired outcome is without detailing the exact steps. In

Kubernetes, declarative APIs allow us to specify the desired state of resources, and the system

automatically works to achieve that state.

Question: How has the application of files and folders in Kubernetes evolved over time?

Answer: The process evolved from applying individual files and folders to applying an entire Git

repository as the source of truth for the cluster's desired state. When this step was taken, the GitOps

approach effectively appeared.

Question: Why is the concept of applying a Git repository significant in the GitOps paradigm?

Answer: By applying a Git repository, we use Git as the definitive source of truth for the entire

system's state. Any change in the repository reflects the desired state, allowing for automated and

consistent deployments, version control, and history tracking.

Question: What happened when the step of applying a Git repository was taken in Kubernetes?

https://www.quicktechie.com/

Answer: When the step of applying a Git repository was taken, GitOps as a concept or approach

effectively came into play, emphasizing Git as the central source of truth for managing and deploying

in Kubernetes clusters.

Question: How does the controller manager play a role in GitOps?

Answer: The controller manager in Kubernetes constantly observes the system's state and compares

it with the desired state. In a GitOps workflow, the desired state is defined in a Git repository. When

discrepancies arise, the controller manager takes actions to reconcile the differences, ensuring the

live state matches the desired state from the Git repository.

Question: What does it mean when we say Kubernetes "reacts" to state changes?

Answer: It means that when a desired state is specified (e.g., through a declarative API or a file in

GitOps), Kubernetes components, such as the API server and controller manager, work to ensure the

live state in the cluster matches this desired state. If there's a divergence, Kubernetes takes action to

bring the live state in line with the specified desired state.

Question: How has the evolution of applying files and folders influenced the emergence of GitOps?

Answer: The ability to apply a whole Git repository as the desired state source was a significant step.

Once this was possible, the GitOps methodology appeared, emphasizing the use of Git for

continuous deployment and infrastructure management within Kubernetes.

Question: Who coined the term "GitOps"?

Answer: The term "GitOps" was coined by people from Weaveworks in 201Question:

Question: How has the perception of GitOps evolved since its inception?

A3: Since its inception, GitOps has turned into a buzzword and is now considered the next significant

development after DevOps.

Question: Can you mention a few ways GitOps has been defined?

A4: GitOps has been defined as operations via pull requests (PRs) and as taking development

practices like version control, collaboration, compliance, CI/CD, and applying them to infrastructure

automation.

Question: Can you enumerate the five identified principles of GitOps, according to the GitOps

Working Group?

A7: The five principles are:

https://www.quicktechie.com/

Question: Declarative configuration

Question: Version-controlled immutable storage

Question: Automated delivery

Question: Software agents

Question: Closed loop

Question: What does "declarative configuration" in GitOps mean?

A8: Declarative configuration means expressing our intent or an end state, not the specific actions to

execute. It emphasizes declaring the desired state rather than specifying step-by-step actions.

Question: How does Git fit into the GitOps principles?

A9: Git is referred to as version-controlled and immutable storage in the GitOps principles. Although

Git is the most used source control system currently, GitOps can also be implemented with other

source control systems.

Question: What does "automated delivery" entail in the context of GitOps?

A10: Automated delivery means there should be no manual actions once the changes reach the

version control system. After updating the configuration, software agents ensure the necessary

actions are taken to achieve the new declared configuration.

Question: Can you explain the "closed loop" principle of GitOps?

A11: The closed loop principle means actions are calculated based on the difference between the

actual system state and the desired state from version control. It ensures the system consistently

tries to match its state with the declared configuration.

Question: Is GitOps exclusive to the Kubernetes ecosystem?

A12: While GitOps originated in the Kubernetes world, the definition aims to apply its principles to

the entire software world, not just Kubernetes.

Question: What's the significance of software agents in the GitOps model?

A13: In the GitOps model, software agents are responsible for ensuring that the necessary actions

are taken to achieve the new declared configuration after it's updated in the version control system.

https://www.quicktechie.com/

Question: : Can you touch on the importance of the "version-controlled immutable storage"

principle in GitOps?

A14: This principle underscores the importance of having a reliable and unchangeable record of all

changes, ensuring that configurations are traceable and ensuring consistency and reliability in the

deployment process.

Question: Can you explain the concept of GitOps?

A1: GitOps refers to the practice of overseeing IT infrastructure and application configurations using

git repositories. In the GitOps approach, infrastructure and application modifications are performed

via git pull requests. This method enhances collaboration, provides clarity into modifications, and

offers a mechanism to monitor and revert changes when required.

Question: How would you differentiate GitOps from the broader concept of DevOps?

A2: While DevOps encompasses a wide range of practices for code management and deployment,

GitOps is a subset that emphasizes the use of git. In GitOps, every code alteration is registered in a git

repository and subsequently auto-deployed through a continuous delivery mechanism, offering an

efficient, automated workflow and improved code change tracking.

Question: What foundational components constitute a GitOps implementation?

A3: A GitOps setup primarily requires a source control repository, a continuous delivery mechanism,

and a deployment tool. The repository hosts the declarative configuration files specifying the

system's intended state. The continuous delivery system automates artifact building and deployment

based on these configurations. Lastly, the deployment tool assures alignment between the actual

system's status and the repository's stated configuration.

Question: In the context of GitOps, how would you describe Continuous Delivery and Continuous

Deployment?

A4: Continuous Delivery involves automatic code building, testing, and deploying as modifications

occur. Continuous Deployment goes a step further, auto-deploying these changes directly to

production, bypassing manual approvals. GitOps embodies these concepts, with a Git repository

acting as the deployment reference point.

Question: Can you shed light on Git Flow and its functioning?

A5: Git Flow is a git branching model, designed by Vincent Driessen in 2010, to streamline code

development and ensure a consistent master branch. It encompasses a 'master' branch for

production-ready code and a 'develop' branch for upcoming releases. Additionally, 'feature' branches

house new feature developments, 'release' branches ready code for releases, and 'hotfix' branches

cater to urgent corrections. Once a feature is finalized, it integrates with the 'develop' branch. When

https://www.quicktechie.com/

this branch accumulates sufficient features for a release, a release branch comes into play, eventually

merging with both the 'master' and 'develop' branches post-release preparation.

Question: How would you define Infrastructure as Code (IaC)?

A6: IaC represents a paradigm where infrastructure management mimics code development. Rather

than manual provisioning and management, infrastructure requirements are coded and executed,

streamlining processes and minimizing human-induced errors.

Question: Why is Git considered vital for GitOps execution?

A7: Git's significance in GitOps arises from its ability to chronicle code evolution. This is crucial for

potential rollbacks after unintended changes. Moreover, Git's branching capability facilitates separate

feature development and experimentation without affecting the main code.

Question: In the GitOps context, why is Kubernetes deemed essential?

A8: Kubernetes plays a pivotal role in GitOps because of its capability to automate deployment and

administration of encapsulated applications. With application codes in a Git repository, Kubernetes

can autonomously deploy and oversee that application, simplifying code management.

Question: Can GitOps be implemented without Kubernetes?

A9: Although Kubernetes is a favored platform for GitOps due to its widespread adoption, it isn't

exclusive. Other container orchestration platforms like Docker Swarm and Apache Mesos can also

facilitate GitOps.

Question: Outside of Git, are there any other version control systems suitable for GitOps?

A10: While Git reigns supreme in the GitOps landscape, alternatives exist. Some entities might prefer

platforms like Bitbucket. However, it's essential to recognize that Git remains the primary version

control system endorsed by prevalent GitOps tools.

Question: What should you consider for effective GitOps implementation?

A11: When diving into GitOps, several practices can enhance its effectiveness:

- Maintain a distinct Git repository dedicated to your GitOps flow.

- Embrace a declarative style for delineating your applications and infrastructure.

- Strive for maximum automation in the entire process.

- Incorporate continuous integration tools like Jenkins or Travis CI.

- Adopt Helm or similar tools for streamlined application deployment.

https://www.quicktechie.com/

- Keep a vigilant eye on your GitOps processes, addressing anomalies promptly.

Question: How can tools like Prometheus, Grafana, and AlertManager augment GitOps?

A12: Tools like Prometheus, Grafana, and AlertManager enhance the transparency of application and

infrastructure health. Such insights can activate alerts and guide subsequent actions. Additionally,

they provide data for analytics to refine the GitOps mechanism.

Question: How does GitOps differ from CI/CD?

A13: GitOps uses git as the cornerstone for deployments, ensuring that all modifications, be it

application, infrastructure, or configuration, are monitored in a git repository. This can then be

automatically deployed using a CI/CD pipeline. The fundamental distinction is that GitOps relies on

the git repository for deployment truth, whereas in CI/CD, the code and deployment repositories

might be distinct, offering more versatility in code change management.

Question: : Could you mention some industry giants that leverage GitOps successfully?

A14: Renowned companies like Google, Facebook, and Netflix have adeptly integrated GitOps to

manage their expansive code repositories. Google has even publicized their GitOps toolkit, Spinnaker.

Question: : Is it imperative for GitOps to coexist with technologies like Docker or Kubernetes?

A15: GitOps can seamlessly integrate with such technologies, but it's not a mandate. It's entirely

feasible to deploy GitOps as a standalone management tool.

Question: : How would you differentiate between continuous delivery and continuous deployment?

A16: Continuous delivery is the automated process of code building, testing, and deployment as

changes occur. Continuous deployment escalates this by pushing ready code changes directly to

production without manual oversight.

Question: : In the context of GitOps, how pivotal is a tool like Jenkins?

A17: Jenkins or similar pipeline tools play a critical role in the GitOps realm, ensuring code undergoes

building, testing, and deployment seamlessly.

Question: : Can you explain what Helm is?

A18: Helm serves as a facilitator to manage Kubernetes-driven applications. It empowers users to

design, initialize, and update applications, also providing rollback capabilities if deemed necessary.

https://www.quicktechie.com/

Question: : Why is having a consolidated source of truth crucial during application deployment?

A19: Centralizing the source of truth during deployment minimizes human-induced errors. Multiple

application versions can lead to inadvertent deployment of an incorrect version. A singular source

ensures everyone accesses the same, latest code.

Question: : Are there scenarios where GitOps might not be the optimal choice?

A20: Indeed, GitOps might not always be the best fit. Situations with legacy infrastructure resistant

to code management, highly manual processes, or concerns about granting developers unrestricted

production access might warrant looking beyond GitOps.

Question: How does Argo CD ensure that the live application state matches the desired state in the

Git repository?

Answer: Argo CD continuously compares the live application state in Kubernetes with the desired

state in the Git repository. If there’s a mismatch, Argo CD provides feedback and can automatically

sync the two states or alert the user.

Question: What are the benefits of using Argo CD for continuous delivery in Kubernetes

environments?

Answer: The benefits include automated deployment following Git actions or manual triggers,

enhanced observability through its UI and notifications engine, and the ability to manage

deployments across multiple clusters with robust RBAC policies.

Question: What are the core components of Argo CD discussed in the section?

Answer: The core components discussed are the concepts of reconciliation, the core objects’ Custom

Resource Definitions (CRDs), and the establishment of a vocabulary for Argo CD operations.

Question: Can you explain the concept of reconciliation in Argo CD?

Answer: Reconciliation in Argo CD is the process of ensuring the live state in the Kubernetes cluster

matches the desired state described in a Git repository. Argo CD continuously monitors these states

and works to align them.

Question: How does Argo CD determine if there’s a mismatch between the desired state in the Git

repository and the live state in the Kubernetes cluster?

Answer: Argo CD compares the Kubernetes manifest YAML generated from tools like Helm with the

desired state in the cluster, known as the sync status. If there are any differences, it identifies the

need for reconciliation.

https://www.quicktechie.com/

Question: What actions does Argo CD take when it identifies differences between the desired state

and the live state?

Answer: Argo CD applies the templated files using `kubectl apply`, thereby updating the Kubernetes

desired state. This process can be automated or done manually.

Question: Describe the significance of Argo CD watching the live Kubernetes objects.

Answer: Argo CD monitors live Kubernetes objects to compare them to the Kubernetes desired state.

This comparison provides insight into the health status of the application.

Question: Why doesn’t Argo CD use `helm install` for deployment?

Answer: Argo CD doesn’t use `helm install` because it supports many templating tools. Its primary

responsibility is to deploy the desired state as a GitOps declarative tool, not to act as a wrapper for

these tools.

Question: How does Argo CD support multiple templating tools?

Answer: Argo CD generates Kubernetes manifest YAMLs, for example through Helm templates, and

then uses standard operations like `kubectl apply` to manage the deployment, ensuring compatibility

with various templating tools.

Question: What is the difference between sync status and health status in the context of Argo CD?

Answer: Sync status refers to the comparison between the Kubernetes manifest YAML (generated

from tools like Helm) and the desired state in the cluster. In contrast, health status pertains to the

comparison between live Kubernetes objects and the Kubernetes desired state.

Question: Why is establishing a common vocabulary for Argo CD operations crucial?

Answer: Establishing a common vocabulary ensures clear communication and understanding among

users and stakeholders when discussing or operating Argo CD.

Question: In the context of Argo CD, what does it mean by "Argo CD is in a reconciling loop from the

Git repository to Kubernetes"?

Answer: It means that Argo CD continuously monitors and compares the desired state in the Git

repository with the live state in Kubernetes, and actively works to reconcile any differences between

them.

Question: What is GitOps and how does it relate to Argo CD?

https://www.quicktechie.com/

Answer: GitOps is a paradigm that emphasizes using Git as the source of truth for declarative

infrastructure and application deployment. Argo CD is a tool that implements the GitOps principles,

ensuring the live state of applications in Kubernetes matches their desired state defined in a Git

repository.

Question: How is an "Application" defined in the context of Argo CD?

Answer: In Argo CD, an "Application" refers to a group of Kubernetes resources described by a

manifest. These are defined as Custom Resource Definitions (CRDs) in Kubernetes.

Question: How does separating repositories benefit developers and auditing processes?

Answer: Separate repositories reduce noise from regular development activity, making it easier to

trace the Git history. It also allows developers, for instance, to scale up replicas in a deployment

specification without triggering a new application build.

Question: Why is it advisable to store the manifests of microservices applications in separate

components?

Answer: Microservices applications often have services with different versioning and release cycles.

Storing manifests separately prevents issues like triggering infinite Git commits due to automated CI

pipelines.

Question: How should organizations decide on the number of deployment configuration

repositories?

Answer: Small companies with less automation can use a mono-repo. Mid-sized companies might

opt for a repository per team. Large organizations with heavy reliance on automation should

consider repositories for each service for more control.

Question: What are the benefits of teams managing their own repositories in ArgoCD?

Answer: Teams having their own repositories can decide on release access, reducing the need for a

central team to manage write access, which could create bottlenecks.

Question: In what scenario might a mono-repo be suitable for an organization’s deployment

configurations?

Answer: A mono-repo might be suitable for small companies that don’t heavily rely on automation

and where all employees are trusted.

Question: How do software engineers validate changes made to manifests?

https://www.quicktechie.com/

Answer: Engineers often commit changes to manifests and allow the GitOps agent to deploy the

application to validate the changes. Before pushing, they can test these changes locally to ensure

they are correct.

Question: Why is it important to test manifest changes before committing them?

Answer: Testing changes before committing prevents the introduction of issues into pre-production.

Question: How does the GitOps agent generate manifests?

Answer: Typically, the agent uses tools like a Helm chart or other templates to generate the

manifests.

Question: What is configuration drift, and why is it problematic?

Answer: Configuration drift refers to differences in configuration between target machines in a CI/CD

deployment. It can cause deployments to fail as there might be inconsistencies between

environments.

Question: What’s the significance of using a staging environment in CI/CD?

Answer: A staging environment ideally mirrors the production environment. This ensures tests

reflect the actual conditions of the live application, providing a realistic validation before production

deployment.

Question: How do teams unintentionally contribute to configuration drift?

Answer: Teams often make ad-hoc changes to Kubernetes clusters using commands that aren’t part

of the CI/CD process. This can introduce inconsistencies between environments.

Question: How does Argo CD ensure there’s no configuration drift?

Answer: Argo CD uses Git as a single source of truth for all deployments, ensuring traceability and

consistency. If changes are made directly (e.g., using `kubectl`), Argo CD detects it and marks the

application as OutOfSync. It also offers an auto-sync capability to eliminate drift.

Question: Why is it important for manifest changes to go through Argo CD?

Answer: Allowing all manifest changes to go through Argo CD maintains a clean Git history. It also

ensures that the current state of deployments is traceable and consistent with the desired state.

https://www.quicktechie.com/

Question: What happens if changes are made to a manifest without committing to the Git

repository?

Answer: If changes aren’t committed, Argo CD can detect inconsistencies and mark the application as

OutOfSync, emphasizing the need for alignment with the single source of truth.

Question: What are the benefits of tools like Kustomize and Helm in relation to Argo CD and GitOps?

Answer: Kustomize and Helm allow for the support of different manifests for a single commit.

Developers should pin dependencies to specific commits to ensure consistency.

Question: How do teams benefit from adopting GitOps?

Answer: Teams that adopt GitOps deploy more frequently, face fewer regressions, and recover from

failures faster.

Question: Who is Alexander Matyushentsev, and why is he significant in the context of GitOps?

Answer: Alexander Matyushentsev is one of the founders of the Argo project. He has written an in-

depth guide on GitOps, providing insights from his experience with Argo, a popular open-source

GitOps tool.

Question: How does Codefresh view Argo in the context of GitOps?

Answer: Codefresh sees many success stories with GitOps and views Argo as the world’s fastest-

growing and most popular open-source GitOps tool. As a result, Codefresh has based its enterprise

platform on Argo.

Question: How does GitOps relate to Infrastructure as Code (IaC)?

Answer: IaC is a broad pattern encompassing various implementations. GitOps, on the other hand,

represents a structured approach to Infrastructure as Code in the cloud-native realm, merging:

- Orchestration

- Monitoring

- Declarative IaC

- Immutable Containers and Infrastructure

- Best DevOps practices

The distinction between IaC and GitOps often hinges on GitOps’ use of immutable containers,

orchestrated by tools like Kubernetes. GitOps maintains the desired state in source control, while IaC

tools might spread the source of truth across multiple repositories or databases.

Question: Can you explain the “convergence mechanism”?

https://www.quicktechie.com/

Answer: Upon updating configurations via Git, Kubernetes ensures that cluster changes align with

the new Git configuration. This approach applies universally to any Kubernetes resource and can be

extended using Kubernetes Custom Resource Definitions (CRDs). Updates involve monitoring cluster

deviations from Git and sending relevant notifications or alerts based on convergence or divergence.

Question: Can I use my CI server for cluster convergence orchestration?

Answer: While CI servers play a role, they aren’t orchestration tools. Orchestration tools like

Kubernetes and Terraform are designed to achieve convergence, ensuring consistent application of

changes. Relying solely on CI tools can introduce complexities and inconsistencies.

Question: Should I replace my CI tool?

Answer: Definitely not! CI servers remain vital for tasks like merging to the mainline, building, and

testing. However, for continuous delivery, leveraging GitOps pipelines can enhance reliability, with

Kubernetes managing deployments based on updates.

Question: Why emphasize PULL over PUSH pipelines?

Answer: Many CICD tools employ a push-based model, which can pose security risks by potentially

exposing cluster credentials. Using a pull pipeline minimizes this risk by allowing internal cluster

operations, like image deployment, without external credential exposure.

Question: What does "Observed State" imply?

Answer: We can never ascertain the actual state of a system but can only observe it. In GitOps,

observability alerts any discrepancies, striving to align the system with its intended state.

Question: How can I determine cluster update success?

Answer: Observing the cluster and comparing it with the Git repository can indicate the success of an

update. Alerts notify about successful convergence or any discrepancies requiring attention.

Question: Why is Developer Experience crucial?

Answer: GitOps introduces workflows simplifying Kubernetes usage. Given the widespread

familiarity with Git among developers, integrating Git workflows can streamline operations and

development processes.

Question: What if Git isn’t my preferred tool?

Answer: Although Git is popular, not everyone favors it. Alternatives like advanced GUIs can

effectively commit to Git, optimizing user experience without compromising efficiency.

https://www.quicktechie.com/

Question: Is GitOps synonymous with Atomic Deployment?

Answer: Not quite. While Git is transactional, ensuring atomic deployments (all or none) in

Kubernetes remains challenging. Kubernetes can try batch updates but doesn’t guarantee complete

success. Nevertheless, GitOps provides a clearer path to transactional operations compared to

manual scripts.

Question: Why choose Git over a Configuration Database?

Answer: Git’s capabilities in maintaining a versioned set of desired states, human-readable

configuration, and immutable properties give it an edge over databases. With platforms like GitHub,

peer reviews become seamless, enhancing change management.

Question: What’s the implication of “whole system” in GitOps?

Answer: Beyond just Kubernetes, GitOps principles should extend to managing the entire

environment, including infrastructure, application configurations, machine configurations, policy

rules, and more.

Question: How should secrets be managed in GitOps?

Answer: Secrets shouldn’t reside in Git repositories. Instead, tools like HashiCorp’s Vault or Bitnami’s

Sealed Secrets should be employed to safely manage cluster secrets in a GitOps framework.

Question: How does GitOps cater to databases or stateful applications?

Answer: While GitOps can manage changes for these, special care is required to ensure synchrony

between code updates and database schemas or persistent data.

Question: What is Kubernetes and why is it significant?

Answer: Kubernetes is one of the most renowned open-source projects currently, serving as a

container orchestrator. It originated from Google’s experience with its internal orchestrator named

Borg.

Question: When did Kubernetes originate and who were its initial developers?

Answer: Kubernetes originated around 2014, developed by a group of engineers from Google based

on their experience with the Borg orchestrator.

Question: What milestone did Kubernetes achieve in 2015?

Answer: Kubernetes reached its Question:0.0 version in 2015, encouraging many companies to

explore it further.

https://www.quicktechie.com/

Question: What role did the CNCF play in Kubernetes’ growth?

Answer: CNCF (Cloud Native Computing Foundation) played a pivotal role in Kubernetes’ adoption by

the community due to its governance structure. Kubernetes became CNCF’s seed project, and

KubeCon became its primary developer conference.

Question: How did the CNCF come into existence?

Answer: After making Kubernetes open source, Google collaborated with the Linux Foundation to

create a new nonprofit organization that would champion the adoption of open-source cloud-native

technologies. This led to the formation of the CNCF.

Question: Why is the governance of CNCF unique and significant for the projects under it?

Answer: Every project or organization inside CNCF has a well-structured set of maintainers. Details

regarding their nomination, decision-making processes, and the rule that no single company can

have a simple majority are clearly laid out. This ensures that the community plays a vital role in a

project’s life cycle and that decisions aren’t taken without community involvement.

Question: What is the significance of the Linux Foundation in the context of CNCF and Kubernetes?

Answer: Google began discussions with the Linux Foundation about establishing a new nonprofit

organization to drive the adoption of open-source cloud-native technologies, leading to the creation

of CNCF.

Question: What is Borg in relation to Kubernetes?

Answer: Borg is Google’s internal orchestrator. Kubernetes was built by engineers who drew upon

their experiences with Borg.

Question: What ensures that decisions within the CNCF are not dominated by a single company?

Answer: The governance structure of CNCF ensures that no company can have a simple majority,

thus ensuring that no decision is made without broader community involvement.

Question: What is KubeCon in the context of CNCF?

Answer: KubeCon is the major developer conference of the CNCF, emphasizing the importance of

Kubernetes and other cloud-native technologies.

Question: How do IaC and GitOps compare?

https://www.quicktechie.com/

Answer: Both IaC and GitOps use source control to store the state and are practices that aim to

automate infrastructure provisioning. While IaC focuses on creating infrastructure through

automation pipelines, GitOps further builds upon this with agents that work to reconcile the system’s

state with that declared in the source control.

Question: What does IaC refer to nowadays?

Answer: IaC refers to practices where infrastructure is created through automation and not

manually. The infrastructure is stored as code in source control, much like application code.

Question: What is a significant advantage of applying changes using IaC?

Answer: Applying changes using IaC, especially through pipelines, reduces inconsistencies between

environments, like staging and production. This minimizes debugging time for developers caused by

configuration drifts.

Question: Can you explain the imperative and declarative ways of applying changes?

Answer: The imperative approach specifies how to achieve a desired state, while the declarative

method defines the desired state itself. Some tools support both, while others, like Terraform or

CloudFormation, are purely declarative.

Question: What is the benefit of having infrastructure in source control?

Answer: It provides transparency, making infrastructure changes clear to everyone. Additionally,

changes can be peer-reviewed through PRs, fostering discussions, ideas, and improvements before

merging.

Question: How does GitOps differ from IaC in applying infrastructure changes?

Answer: While IaC typically uses a push mode with a CI/CD system, GitOps employs agents working

in a loop to reconcile the system’s state with the declaration in source control. In GitOps, the

differences are calculated and applied repeatedly until no disparities remain.

Question: How does the GitOps approach enhance security?

Answer: In GitOps, it’s not the pipeline that holds the production credentials. Instead, the agent

stores them and can run within the same account as your production or in a separate trusted one,

enhancing security.

Question: Can GitOps support both imperative and declarative methods?

Answer: GitOps primarily supports the declarative way since agents need a specified desired state,

and the control of how to achieve that state is left to controllers and operators.

https://www.quicktechie.com/

Question: Can a traditionally IaC tool be utilized in a GitOps approach?

Answer: Yes. An example is Terraform used in conjunction with Atlantis. In this setup, Atlantis acts as

an agent running remotely, fitting the GitOps definition.

Question: In your view, what differentiates IaC and GitOps the most?

Answer: While both practices store state in source control, GitOps introduces the concept of agents

and a continuous control loop, emphasizing security and a purely declarative nature.

Question: What are "closed loops" in the context of GitOps?

Answer: Closed loops in GitOps refer to the continuous reconciliation process where differences

between the current state and the desired state in source control are constantly calculated and

applied until there are no more differences.

Question: What is the role of controllers and operators in GitOps?

Answer: Controllers and operators in GitOps are responsible for achieving the desired state specified

in the source control, offloading the burden of determining "how" from the user.

Question: How does using Terraform with Atlantis fit into GitOps?

Answer: When used with Atlantis, Terraform applies infrastructure changes in a GitOps manner since

commands aren’t executed from the pipeline but by the agent (Atlantis).

Question: In conclusion, are IaC and GitOps more similar or different?

Answer: They are more closely related than different. Both have the state stored in source control

and enable change implementations through PRs. The main distinctions arise from GitOps’ emphasis

on agents and the control loop.

Question: What is GitOps?

Answer: GitOps is a set of practices that emphasizes using Git as the source of truth for declarative

infrastructure and application deployment.

Question: Can you describe Argo CD and its primary function?

Answer: Argo CD is a declarative, GitOps continuous delivery tool for Kubernetes. Its primary

function is to ensure the live state of applications on Kubernetes matches the desired state specified

in a Git repository.

https://www.quicktechie.com/

Question: What is the role of the application controller in Argo CD?

Answer: One of the core components of Argo CD, the application controller, continuously observes

running applications and compares the current application state against the desired target state, with

the source of truth being a Git repository.

Question: How does Argo CD empower automated deployment?

Answer: Argo CD automates deployment by pushing the desired state from the Git repository into

the cluster after any Git commit, CI pipeline run, or a manual sync trigger. This is achieved using the

Argo Events automation framework or via a manual user request.

Question: What is the purpose of the Argo Events automation framework in Argo CD?

Answer: The Argo Events automation framework (https://argoproj.github.io/argo-events/) aids in

pushing the desired state from the Git repository into the Kubernetes cluster in an automated

manner after specific triggers, such as a Git commit or a CI pipeline run.

Question: What are the observability features offered by Argo CD?

Answer: Argo CD provides observability through its UI, CLI, and the Argo CD Notifications engine.

These tools help identify whether the current state of an application is in sync with the desired state

in the Git repository.

Question: Can you elaborate on the Argo CD Notifications engine?

Answer: The Argo CD Notifications engine (https://argocd-notifications.readthedocs.io/en/stable/) is

a tool that helps in determining whether the state of the application is in sync with the desired state

in Git, providing insights and alerts to users.

Question: How does Argo CD support multi-tenancy?

Answer: Argo CD supports multi-tenancy by offering the capability to manage and deploy to multiple

Kubernetes clusters. It also has Role-Based Access Control (RBAC) policies for authorization, ensuring

secure and segregated access.

Question: What is an "Application source type"?

Answer: The "Application source type" refers to the tool used to build applications. Examples include

Helm, Kustomize, and jsonnet.

Question: Can you distinguish between "Target state" and "Live state"?

https://www.quicktechie.com/

Answer: The "Target state" is the desired state of an application as represented in a Git repository.

The "Live state" refers to the current state of that application, indicating which Kubernetes resources

are deployed.

Question: What is meant by "Sync status"?

Answer: "Sync status" indicates whether the live state of the application deployed in Kubernetes

matches its desired state as described in the Git repository.

Question: Explain the process of "Sync" in Argo CD.

Answer: "Sync" in Argo CD refers to the phase of moving an application to its target state. This is

achieved by applying the changes in the Git repository to the Kubernetes cluster.

Question: What does "Sync operation status" convey?

Answer: The "Sync operation status" provides feedback on the sync phase, indicating whether it has

failed or succeeded.

Question: What does the "Refresh" operation entail?

Answer: The "Refresh" operation involves comparing the latest code in the Git repository with the

live state in the Kubernetes cluster to identify any differences.

Question: How is the "Health status" of an application determined in Argo CD?

Answer: The "Health status" reflects the operational condition of the application, indicating whether

it is running and capable of serving requests.

Question: What role do Custom Resource Definitions (CRDs) play in defining an application in Argo

CD?

Answer: In Argo CD, an "Application" is a group of Kubernetes resources described by a manifest.

These manifests are defined as CRDs in Kubernetes, allowing users to create new resource types and

extend the Kubernetes API.

Question: Can you explain the architecture of Argo CD?

Answer: Argo CD’s architecture consists of various core components like the API server, repository

server, and application controller. These components are integrated with a Kubernetes cluster to

manage the desired application state as defined in a Git repository.

https://www.quicktechie.com/

Question: What role does a Kubernetes controller play in Argo CD’s architecture?

Answer: The Argo CD core component functions as a Kubernetes controller. Kubernetes controllers

observe the cluster’s state and make necessary changes to ensure the current state matches the

desired state. Essentially, the controller ensures the live state of the cluster aligns with the defined

desired state.

Question: Describe the responsibilities of Argo CD’s API server.

Answer: Argo CD’s API server is akin to Kubernetes’s API server. It exposes APIs for other systems like

the Web UI, CLI, Argo Events, and CI/CD systems to interact with. Its primary responsibilities include

managing applications, reporting their status, triggering operations, managing Git repositories and

Kubernetes clusters, supporting authentication and SSO, and enforcing RBAC policies.

Question: How does the Repository server function in Argo CD’s architecture?

Answer: The repository server maintains a local cache of the Git repository containing the

application manifests. Other Argo services retrieve Kubernetes manifests from this server based on

the repository URL, Git revision, application path, and template-specific settings like parameters,

ksonnet environments, and helm values.yaml.

Question: What is the primary role of the Application controller in Argo CD?

Answer: The application controller continually observes the application’s live state and compares it

to the desired state in the Git repository. If a discrepancy or drift is detected, the controller works to

align the current state with the desired state. It also executes user-defined hooks related to the

application’s lifecycle events.

Question: How does Argo CD ensure that the live application state matches the desired state in the

Git repository?

Answer: The application controller in Argo CD continually monitors the live state of the application.

Whenever it detects a drift from the desired state as defined in the Git repository, it takes actions to

bring the live state back in sync with the desired state.

Question: In the context of Argo CD, what does ‘desired state’ refer to?

Answer: In Argo CD, the ‘desired state’ refers to the state of the application as defined in the Git

repository. It represents how the application should be configured and run in the Kubernetes cluster.

Question: How does Argo CD handle user-defined hooks for application lifecycle events?

Answer: The application controller in Argo CD is responsible for executing any user-defined hooks

associated with the lifecycle events of the application, ensuring customization and extensibility.

https://www.quicktechie.com/

Question: What can be defined declaratively in Argo CD?

Answer: In Argo CD, applications, projects, repositories, cluster credentials, and settings can all be

defined declaratively.

Question: How does Argo CD facilitate the declarative definition of its components?

Answer: Argo CD facilitates this through the use of Kubernetes manifests.

Question: What are CRDs in the context of Argo CD?

Answer: CRDs, or Custom Resource Definitions, are used in Argo CD to define its core objects and

resources such as applications, projects, and repositories.

Question: What is the significance of CRDs in Kubernetes and how does Argo CD leverage them?

Answer: CRDs allow users to define and manage custom resources in Kubernetes. Argo CD leverages

CRDs to enable declarative definitions of its core objects and resources.

Question: Can you name some of the core objects or resources of Argo CD?

Answer: Some of the core objects/resources of Argo CD include applications, projects, repositories,

cluster credentials, and settings.

Question: Why might one want to define Argo CD components declaratively?

Answer: Defining components declaratively helps in maintaining a consistent and reproducible

infrastructure, which aligns with the GitOps philosophy. It ensures the infrastructure is version-

controlled, auditable, and can be easily restored or replicated.

Question: How does a "deep dive" into the core objects/resources of Argo CD help in understanding

its functionality?

Answer: Taking a deep dive into the core objects/resources gives a comprehensive understanding of

how Argo CD operates, manages deployments, and interacts with Kubernetes. It provides insights

into its architecture and functionalities.

Question: What is the primary purpose of Argo CD Autopilot?

Answer: Argo CD Autopilot was developed to assist operators in onboarding to GitOps and Argo CD,

simplifying the process of structuring Git repositories and managing applications across various

environments.

https://www.quicktechie.com/

Question: How does Argo CD Autopilot assist in managing the bootstrap Argo CD application?

Answer: Argo CD Autopilot helps in creating and managing the bootstrap Argo CD application using

GitOps principles, allowing for structured setup and management of Argo CD right from a Git

repository.

Question: What does Argo CD Autopilot offer in terms of structuring a GitHub repository?

Answer: Argo CD Autopilot sets up a formal structure in the GitHub repository, making it easier to

add new services and navigate the Argo CD life cycle.

Question: How does Argo CD Autopilot support promoting applications across different

environments?

Answer: Argo CD Autopilot provides features for updating and promoting applications across various

available environments, ensuring consistent deployments and application states across different

stages.

Question: How does Argo CD Autopilot prepare for disaster recovery?

Answer: It offers the ability to plan for disaster recovery by enabling the bootstrapping of a failover

cluster equipped with all the essential utilities and applications.

Question: What upcoming feature related to secrets is mentioned for Argo CD Autopilot?

Answer: Argo CD Autopilot is soon going to support encryption for the Secrets used in Argo CD

applications.

Question: What is the unique aspect of Argo CD managing itself as highlighted in the first bullet?

Answer: It’s like inception where Argo CD manages its own deployment in the cluster, either through

manifests or Helm, allowing its configuration to be altered using GitOps principles.

Question: How does Argo CD Autopilot handle the Argo CD installation in a Git repository?

Answer: Argo CD Autopilot pushes an Argo CD application manifest under a specific directory in the

Git repository. This manifest will manage the Argo CD installation, letting users handle it with GitOps

practices.

Question: Can you explain the "magic" that Argo CD Autopilot performs?

https://www.quicktechie.com/

Answer: Argo CD Autopilot bootstraps the Git repository with an Argo CD application manifest. This

manifest not only manages the Argo CD installation but also ensures that the Argo CD instance itself

can be managed following GitOps principles.

Question: Why might someone be surprised by the idea of Argo CD managing itself?

Answer: The concept might be surprising because it’s analogous to inception – where Argo CD, which

is typically used to manage deployments, is also managing its own deployment. It showcases the

versatility and adaptability of GitOps principles.

Question: How can you install Argo CD with high availability?

Answer: You can install Argo CD with high availability using Kustomize and HA manifests.

Question: What approach is emphasized when configuring Argo CD?

Answer: The GitOps approach is emphasized when configuring Argo CD.

Question: If you wanted to modify the settings of Argo CD, where would you make changes?

Answer: Changes can be made in the ConfigMap of a live Argo CD installation to modify its settings.

Question: Can you name some of the main components of Argo CD?

Answer: The text mentions different Argo CD components but doesn’t specify them. However, in

general, the main components include the ArgoCD API server, repository server, application

controller, and the UI.

Question: What do the HA manifests introduce or change in the Argo CD setup?

Answer: The HA manifests introduce changes to make the Argo CD installation highly available.

Question: Even if a Kubernetes cluster has multi-control planes and worker nodes, can it still fail?

Answer: Yes, even with a multi-control plane and worker nodes, a Kubernetes cluster can still fail.

Question: How do you prepare Argo CD for disaster recovery?

Answer: To prepare for disaster recovery, one should know how to move the Argo CD installation

from one cluster to another, including transferring all the state.

Question: How can you ensure the observability of Argo CD operations?

https://www.quicktechie.com/

Answer: Observability can be ensured by monitoring the metrics that Argo CD exposes.

Question: What notifications can be set up related to Argo CD applications?

Answer: Notifications can be set up to alert end users or send custom hooks to a CI/CD system when

an application synchronizes successfully or if it fails.

Question: What are some of the key topics covered in the chapter related to operating Argo CD?

Answer: The key topics covered include declarative configuration, setting up an HA installation,

planning for disaster recovery, enabling observability, and notifying the end user.

Question: How does Argo CD's architecture align with cloud native applications?

Answer: Like most cloud native applications, Argo CD features a microservices architecture that

comprises multiple components and technologies. These components work in harmony to support a

fault-tolerant and robust system.

Question: What is the significance of understanding the interactions between Argo CD's services?

Answer: Understanding how these services work together provides greater awareness of the

architecture, its significance, and how they integrate into the overall system.

Question: Can you explain Argo CD's emphasis in its architecture?

Answer: Argo CD, being a GitOps based solution for Kubernetes, emphasizes the use of as many

Kubernetes primitives as possible. It sources content from repositories and realizes those

configurations within a Kubernetes cluster.

Question: What is drift management in the context of Argo CD?

Answer: Drift management refers to Argo CD's capability to enforce configurations to remain

consistent in the Kubernetes cluster, even if they are externally modified. It ensures that the current

state in the cluster matches the desired state sourced from repositories.

Question: How does Argo CD implement drift management?

Answer: Argo CD implements drift management using the Kubernetes concept called a Controller.

This controller continuously monitors and manages the desired state of resources, reconciling any

differences to match the current state with the defined state.

Question: What's the role of a ReplicaSet controller in Kubernetes?

https://www.quicktechie.com/

Answer: The ReplicaSet controller monitors all pods created for a given ReplicaSet. It ensures that

the actual state of resources in the cluster matches the expected and defined state, reconciling

differences as necessary.

Question: How are the core configurations of Argo CD stored?

Answer: The core configurations of Argo CD are stored within Kubernetes ConfigMaps and Secrets.

Question: What are Custom Resources in the context of Kubernetes, and why were they introduced?

Answer: Custom Resources, implemented through CustomResourceDefinitions (CRDs), allow users to

register new resource types within Kubernetes. They enable defining properties of these new

resources and register a new API endpoint in the Kubernetes API server for their management.

Question: How does an operator in Kubernetes differ from a standard controller?

Answer: An operator builds upon the foundations of a Kubernetes controller. It manages the current

and desired state of resources in a Kubernetes cluster, specifically focusing on Custom Resources.

Operators possess domain-specific knowledge to interpret these resources and ensure the state

within Kubernetes aligns with defined values.

Question: How does Argo CD leverage Custom Resources?

Answer: Argo CD uses several Custom Resources, and their properties are the primary means to

enable users to manage their Kubernetes resources using GitOps principles. Both Kubernetes

Controllers and Custom Resources are fundamental to Argo CD's architecture.

Question: What kind of architecture does Argo CD implement?

Answer: Argo CD implements a microservices based architecture, consisting of multiple distributed

systems that act in a coordinated fashion.

Question: How does Argo CD make use of Custom Resources?

Answer: Argo CD uses Custom Resources to define business logic and APIs for GitOps management

capabilities. The main Custom Resources provided with Argo CD are Applications, AppProjects, and

ApplicationSets.

Question: What are the main responsibilities of the Application Controller and ApplicationSet

Controller in Argo CD?

Answer: They are Kubernetes Operators that continuously monitor the state of Application and

ApplicationSet resources and compare the live state in the Kubernetes cluster to the desired state

from source repositories. They also handle lifecycle events associated with the content they

reconcile.

https://www.quicktechie.com/

Question: What is the primary function of the Repository Server in Argo CD?

Answer: The Repository Server maintains a local cache of the remote content source, translating it

into Kubernetes manifests. It generates resources based on parameters like repository type, source

location, path, and template tool specific parameters. Custom plugins are also executed within this

component.

Question: Describe the role of the API server in Argo CD.

Answer: The API server is a gRPC/REST based server exposing services for application management,

status reporting, invocation of application operations, cluster and repository management, and RBAC

enforcement. It's relied upon by the User Interface, CLI, and external CI/CD systems. It also provides

a web User Interface for managing Argo CD.

Question: How does Argo CD utilize Redis?

Answer: Argo CD uses Redis as an in-memory database for local caching to reduce dependency on

external systems. It caches remote repositories' contents, Kubernetes resources' state, and

connection status of remote repositories and clusters. The cache content is not persisted and is

rebuilt at startup.

Question: What is the purpose of the Argo CD Command Line Interface (CLI)?

Answer: The CLI is a utility for interacting with Argo CD, managing the platform's configuration, and

the lifecycle of Applications. It communicates via the Argo CD API and offers a broader set of

capabilities than the Argo CD user interface.

Question: How does Single Sign On (SSO) work in Argo CD?

Answer: Argo CD provides user management capabilities, allowing users to be defined locally or

sourced from an external source. For external integration, OpenID Connect (OIDC) authentication is

supported. If external providers don't support OIDC directly, the Dex identity server acts as a bridge.

Question: How do notifications function in Argo CD?

Answer: Starting in version Question:3, Argo CD includes a notifications feature. It monitors and

triggers notifications based on the lifecycle of Applications using templating capabilities and a catalog

of triggers. Notifications can be sent to platforms like Slack, Email, or invoke other webhooks.

Question: Why are Argo CD notifications essential for production systems?

https://www.quicktechie.com/

Answer: Understanding the current state of systems and environments is vital for running production

systems. Argo CD notifications provide insights and alerts, which will be discussed in greater detail in

Chapter 13 of the book.

Question: What are the key patterns emphasized by Argo CD?

Answer: Argo CD emphasizes defining resources in a declarative fashion, using a stateless

architecture, and ensuring flexibility in its operation.

Question: How does Argo CD embody the principles of GitOps?

Answer: Argo CD allows resources to be defined in a declarative manner and manages its own

configuration through GitOps, thereby storing its configuration in a ConfigMap or Secret.

Question: What is the significance of Argo CD's stateless architecture?

Answer: Argo CD's stateless architecture ensures that configurations represent the system's state,

which can be rebuilt at any time. This is achieved using etcd as the persistent store for resources.

Question: How does Argo CD ensure persistence for its resources?

Answer: Argo CD uses etcd, Kubernetes' key/value datastore, to act as the persistent store for

resources. For tracking state against specific resources, the status field of Kubernetes resources is

employed.

Question: What role does Redis play in the Argo CD architecture?

Answer: In the Argo CD architecture, Redis is utilized as a volatile cache, without any long-term

persistence.

Question: How does Argo CD provide flexibility in managing resources?

Answer: Argo CD supports sourcing GitOps content from multiple repository types and offers built-in

support for templating resources using tools like Kustomize, Helm, and Jsonnet. It also allows the

addition of user-defined tools.

Question: What methods and tools are supported for installing Argo CD?

Answer: Argo CD can be installed using various methods and tools, such as Kustomize and Helm. The

choice depends on user preferences and any specific requirements or constraints they might have.

Question: How does Argo CD accommodate different installation requirements?

https://www.quicktechie.com/

Answer: Argo CD supports multiple installation configurations, determined by factors like the

platform's users and consumers, the scope of Argo CD's management, and the need for high

availability.

Question: What is a multi-tenant type of installation in Argo CD?

Answer: A multi-tenant installation of Argo CD is commonly utilized as it provides the full set of Argo

CD capabilities and is geared towards multiple users spanning across different teams within an

organization.

Question: How does a core deployment of Argo CD differ from a multi-tenant deployment?

Answer: A core deployment is minimalistic, omitting features like the API server, user interface, SSO,

or notifications. It's optimized to consume fewer resources in a non-highly available configuration,

making it suitable for individual users without the need for the full Argo CD feature set.

Question: What does a "namespaced" mode in Argo CD entail?

Answer: In "namespaced" mode, Argo CD is deployed within a specific namespace and is restricted

to manage resources only within specified namespaces. This is useful in multi-tenant environments

where teams operate their own Argo CD instances but don't have access to manage cluster-wide

resources.

Question: How does Argo CD support high availability in production environments?

Answer: Argo CD supports high availability by allowing the configuration of its components for

increased resiliency and performance. This involves increasing the replica count and tuning

parameters within each component. Proper configurations are essential as indiscriminately

increasing replicas can lead to performance degradation.

Question: What are the considerations for a highly available deployment of Argo CD?

Answer: To achieve a highly available deployment, one must increase the replica count and enable

specific tunable parameters. However, it's vital to follow certain considerations, as merely increasing

the replica count uniformly can degrade performance.

Question: What is Argo CD?

Answer: Argo CD is a Kubernetes-native continuous deployment (CD) tool that allows developers to

pull updated code from Git repositories and deploy it directly to Kubernetes resources. It merges

both infrastructure configuration and application updates into one system.

Question: How does Argo CD differ from external CD tools?

https://www.quicktechie.com/

Answer: Unlike external CD tools that primarily facilitate push-based deployments, Argo CD can pull

code directly from Git repositories for deployment to Kubernetes resources.

Question: What are some of the primary features of Argo CD?

Answer: Argo CD offers features like manual/automatic deployment to Kubernetes, application state

synchronization, a web user interface and CLI, RBAC for multi-cluster management, SSO integration,

webhook support, and more.

Question: What is GitOps and how does Argo CD support it?

Answer: GitOps is an engineering practice where a Git repository serves as the single source of truth.

It defines environments and configurations necessary for continuous delivery. Argo CD manages the

latter stages of the GitOps process, ensuring that configurations are accurately deployed to a

Kubernetes cluster.

Question: How does a typical Argo CD process flow work?

Answer: The process begins with a developer making application changes and pushing Kubernetes

resource definitions to a Git repo. After continuous integration, a pull request is issued and changes

are merged, triggering Argo CD to clone the repo, compare application states, apply changes to the

cluster, and report the application's sync status.

Question: How does Argo CD monitor and manage discrepancies between the Kubernetes cluster

and the Git configuration?

Answer: Argo CD continuously observes changes in the Kubernetes cluster and reverts them if they

don't align with the configuration present in Git.

Question: What role does the GitOps agent play in Argo CD?

Answer: The GitOps agent in Argo CD is responsible for pulling updated code from Git repositories

and deploying it directly to Kubernetes resources. It integrates both infrastructure configuration and

application updates within one system.

Question: Can you explain Argo CD's Custom Resource Definitions (CRD)?

Answer: Argo CD operates in its own Kubernetes namespace and introduces its own CRDs that

extend the Kubernetes API. These CRDs allow defining the desired application state declaratively.

Based on Git or Helm repo instructions, Argo CD uses these CRDs to execute changes within its

namespace.

Question: How does the CLI enhance Argo CD's functionality?

https://www.quicktechie.com/

Answer: Argo CD's CLI is powerful and allows users to create YAML resource definitions with

straightforward commands, bypassing the need to manually write YAML. For instance, the `app

create` command in Argo CD helps in defining applications effortlessly.

Question: What is unique about Argo CD's User Interface?

Answer: Argo CD provides a web-based UI that aids users in defining applications and generating the

relevant YAML configurations. It also visualizes the resulting Kubernetes configuration in terms of

pods and containers. The UI doesn't directly control the cluster but provides an easier method to

create declarative configurations.

Question: Some argue using a UI isn't in line with GitOps principles. What's your take on this?

Answer: While some may believe using a UI isn't "true" GitOps, this isn't necessarily accurate. Argo

CD's UI doesn't directly control the cluster but serves as a more user-friendly way to establish the

declarative configuration.

Question: What does Argo CD offer in terms of multi-tenancy support?

Answer: Argo CD has robust support for multiple teams working on distinct projects within the same

Kubernetes environment. It can restrict CRDs to read only specific source repositories associated

with a particular project and can deploy applications to a designated cluster and namespace. Each

CRD instance can have its own role-based access control settings.

Question: How does Argo CD accommodate organizations that have invested in existing declarative

configurations?

Answer: Argo CD is designed to leverage existing investments in declarative configurations like YAML,

Helm charts, Kustomize, or other systems. Instead of replacing them, it utilizes these formats to

automatically create the relevant CRD definitions.

Question: List the types of Kubernetes manifests that Argo CD supports for specifying application

configurations.

Answer: Argo CD supports several types of Kubernetes manifests, including plain YAML or JSON

manifests, Helm charts, Kustomize, Ksonnet, and Jsonnet applications. It can also accommodate any

custom configuration management tool via plugins.

Question: How does Argo CD ensure traceability of application updates?

Answer: Updates in Argo CD are traceable as tags, branches, or they can be pinned to specific

versions of a manifest at Git commits.

Question: Explain the role of Argo CD as a Kubernetes controller.

https://www.quicktechie.com/

Answer: Argo CD acts as a Kubernetes controller that continuously monitors all running applications.

It compares their live state with the desired state defined in the Git repository. Any discrepancies

between the live and desired states are identified as "OutOfSync." Argo CD then reports these

deviations and offers visual tools to aid developers in syncing both states manually or automatically.

Question: How does Argo CD maintain synchronization between the desired application state in the

Git repository and the target environment?

Answer: Argo CD automatically applies any changes in the desired state from the Git repository to

the target environment, ensuring applications remain synchronized.

Question: Describe the core components and responsibilities of the Argo CD API.

Answer: The Argo CD API consists of a gRPC/REST API server, which provides the API consumed by

components like the CLI and Web UI. It handles tasks such as managing applications and their

statuses, invoking app operations (like user-specified actions, synchronization, and rollback),

managing cluster and repository credentials stored as Kubernetes secrets, authenticating and

delegating authorization to third-party identity providers, enforcing RBAC policies, and listening to

and forwarding Git webhook events.

Question: What is the significance of Argo CD's "OutOfSync" status?

Answer: The "OutOfSync" status in Argo CD indicates that there's a deviation between the live state

of a deployed application and its desired state specified in the Git repository. This status helps

developers recognize discrepancies and take corrective action.

Question: How does Argo CD leverage third-party identity providers?

Answer: Argo CD's API server is capable of authenticating and delegating authorization tasks to third-

party identity providers, ensuring secure and seamless integration.

Question: Why is it essential for Argo CD to enforce RBAC policies?

Answer: Enforcing RBAC (Role-Based Access Control) policies ensures that access and operations

within Argo CD are granted only to authorized users or groups, enhancing security and preventing

unauthorized changes.

Question: What is the primary function of the internal repository service in ArgoCD?

Answer: The internal repository service caches the Git repository locally, storing the application

manifests and generating Kubernetes manifests based on various inputs.

Question: How does the repository server generate Kubernetes manifests?

https://www.quicktechie.com/

Answer: The repository server uses inputs like the repository URL, application path, revisions

(commits, tags, branches), and template-specific settings (e.g., Helm values, Ksonnet environments,

parameters) to generate the manifests.

Question: What is the role of the Application Controller in ArgoCD?

Answer: The Application Controller is a Kubernetes controller that continuously monitors

applications, comparing the desired state from the Git repository with the current live state. It

identifies when an application is OutOfSync and can make corrections based on specified

parameters.

Question: What is the application lifecycle events that the Application Controller can invoke hooks

for?

Answer: The Application Controller can invoke hooks for events such as PreSync, Sync, and PostSync.

Question: Why is it recommended to separate source code and configuration repositories in ArgoCD?

Answer: Maintaining separation enhances manageability, ensures modifications in one don't affect

the other, keeps audit logs cleaner, offers security by separating access, and prevents developers

from accidentally misconfiguring applications.

https://www.quicktechie.com/

